Lecture 26:

THE GRAPHICS MODULE

CSC111: Introduction to CS through Programming

R. Jordan Crouser

Assistant Professor of Computer Science

Smith College

Announcements

 As mentioned on Slack, my Tuesday office hours this week are **rescheduled** to:

TODAY 2 - 3:30pm

 I'll also be available on slack / Google Hangout during Tuesday hours

Outline

- Python packages (graphics)
 - A quick demo
 - Using python modules
 - Drawing pictures with graphics
 - About the final project
- Animation
- Lab: Fish Tank
- Interaction

Some of you may know...

My in-office substitute

Discussion

How do you think they **built** that? What **components** did they need?

1. Draw stuff

The images we draw are composed of marks: like ink

...this is what today will be about

2. Make it move

3. Get input from the user and react

Hmm...

If these are the basic components of every game, it's probably the case that someone else has had to build them before...

The graphics module*

- Two kinds of objects:
 - stuff you draw (Graphics objects)
 - stuff you draw on (GraphWin objects)

- Basic formula for drawing graphics:
 - open a graphic window (a GraphWin)
 - construct some Point, Line, Circle, Oval, Rectangle,
 Polygon, and Text objects
 - draw them to the window
 - close the window when you're done
 - terminate the program
 - written by John Zelle to go along with his book "Python Programming: An Introduction to Computer Science" (Franklin, Beedle & Associates)

 Available from: http://mcsp.wartburg.edu/zelle/python/

```
*Untitled*
from graphics import *
def main():
    win = GraphWin("CSC111 - Graphcs Demo", 600, 400)
    c = Circle(Point(50,50), 10)
    c.draw(win)
    win.getMouse()
    win.close()
if __name__ == "__main__":
    main()
                                                  Ln: 9 Col: 0
```

```
*Untitled*
from graphics import
                                   import the module
                             (this method means we don't have to type
                              "graphics." in front of every method)
def main():
    win = GraphWin("CSC111 - Graphcs Demo", 600, 400)
    c = Circle(Point(50,50), 10)
    c.draw(win)
    win.getMouse()
    win.close()
if __name__ == "__main__":
    main()
                                                      Ln: 9 Col: 0
```

```
*Untitled*
from graphics import *
                  build a GraphWin object
def main():
    win = GraphWin("CSC111 - Graphcs Demo", 600, 400)
    c = Circle(Point(50,50), 10)
    c.draw(win)
    win.getMouse()
                                                  height
    win.close()
if __name__ == "__main__":
    main()
                                                  Ln: 9
                                                     Col: 0
```

```
*Untitled*
from graphics import *
def main():
    win = GraphWin("CSC111 - Graphcs Demo", 600, 400)
    c = Circle(Point(50,50), 10)
    c.draw(win)
    win.getMouse()
                              construct a Circle object
    win.close()
                              (centered at (50,50) with a radius of 10)
if __name__ == "__main__":
    main()
                                                     Ln: 9 Col: 0
```

```
*Untitled*
from graphics import *
def main():
    win = GraphWin("CSC111 - Graphcs Demo", 600, 400)
    c = Circle(Point(50,50), 10)
    c.draw(win)
    win.getMouse() draw the Circle to the GraphWin
    win.close()
if __name__ == "__main__":
    main()
                                                Ln: 9 Col: 0
```

```
*Untitled*
from graphics import *
def main():
    win = GraphWin("CSC111 - Graphcs Demo", 600, 400)
    c = Circle(Point(50,50), 10)
    c.draw(win)
    win.getMouse()
                          wait for the user to click
    win.close()
                        (so we can actually look at what we drew)
if __name__ == "__main__":
    main()
                                                     Ln: 9 Col: 0
```

```
*Untitled*
from graphics import *
def main():
    win = GraphWin("CSC111 - Graphcs Demo", 600, 400)
    c = Circle(Point(50,50), 10)
    c.draw(win)
    win.getMouse()
    win.close()
                        close the GraphWin
if __name__ == "__main__":
    main()
                                                  Ln: 9 Col: 0
```


First "graphical primitives"

Points

- Used to anchor other objects (circles or rectangles)
- Defined by x and y coordinates

```
# create a point at location (50, 50)
p1 = Point(50,50)

# create a point at location (300, 50)
p2 = Point(300,50)
```

First "graphical primitives"

First "graphical primitives"

Circles

- Defined by a center and a radius
- The center is a Point

```
# create a circle centered at (50, 50)
# with radius 70
c1 = Circle( Point(50,50), 70 )
c1.draw( win )
```

First "graphical primitives" Rectangles

Defined by a top-left, and a bottom-right point

```
# create a rectangle with top-left corner
# at (5,5) and bottom-right at (50,50)

r3 = Rectangle( Point(5,5), Point( 50, 50) )
r3.draw( win )
```

Filling an object with color

```
# create a rectangle with top-left corner
# at (5,5) and bottom-right at (50,50)

r3 = Rectangle( Point(5,5), Point( 50, 50) )
r3.setFill( "red" )
r3.draw( win )
```

What if we want a more specific color?

```
# create a rectangle with top-left corner
# at (5,5) and bottom-right at (50,50)

r3 = Rectangle( Point(5,5), Point( 50, 50) )
color = color_rgb( 200, 100, 150 )
r3.setFill( color )
r3.draw( win )
```

Okay, let's make a fish!

Discussion

How can we get all of these parts to work together?

Making a fish

Outline

- √Python packages (graphics)
 - ✓ A quick demo
 - ✓ Using python modules
 - ✓ Drawing pictures with graphics
 - About the final project
- Animation
- · Lab: Fish Tank
- Interaction

About the final project

- Four weeks of class left! (time to talk about the final)
- Goal of the project: apply the techniques we've learned in this class to something you care about

• Ideas:

- an computer-generated animation
- a custom game
- a tool to help plan your path through the major
- a poem generator (expanding Lab 5)
- a choose-your-own-fractal program (expanding Lab 7)
- a graphing calculator program (expanding Assignment 2)
- anything else you can think of!

Final project deliverables

- Sunday Nov 18th: Final Project Proposal
- Sunday December 2nd: Prototype I
- Monday December 10th: Prototype II
- Wednesday December 19th: Final Write-Up

FP1: final project proposal

- 1. Names of **people** working on this project
- 2. What's the **big idea** behind this project?
- 3. What are the (major) building blocks the project will need to be successful?
- 4. Which do you know how to build already, and which ones do you still need to figure out?
- 5. Are there any **potential roadblocks**?

Coming up next

- √Python packages (graphics)
 - ✓ A quick demo
 - ✓ Using python modules
 - ✓ Drawing pictures with graphics
 - ✓ About the final project

Animation

- Lab: Fish Tank
- Interaction