MassMutual DSDP 2017: INTRODUCTION TO DATA VISUALIZATION

June 8, 2017

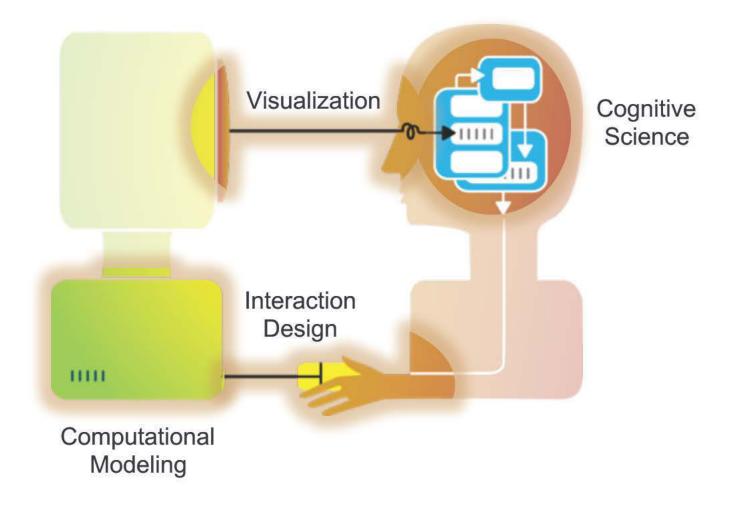
R. Jordan Crouser & Amelia McNamara Statistical & Data Sciences Smith College

People

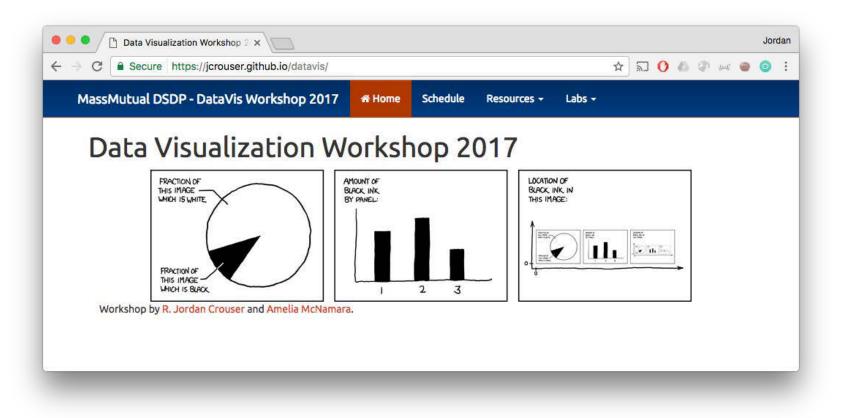
Jordan (computer scientist)

Amelia (statistician)

Our research (broadly)

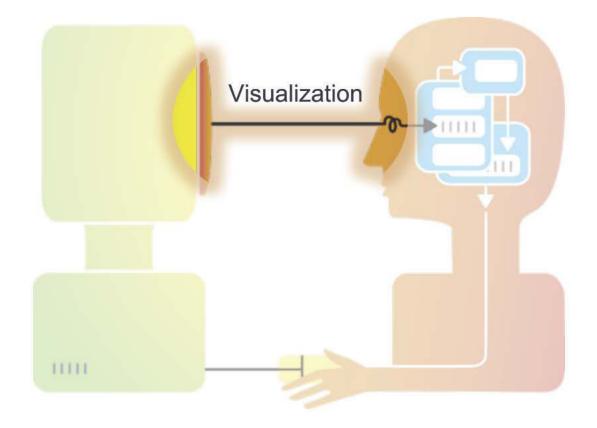


Housekeeping

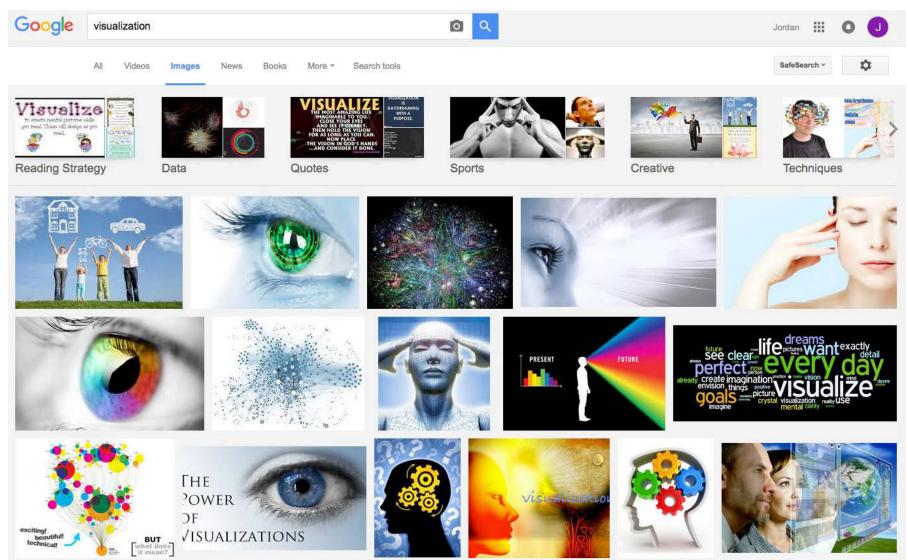


jcrouser.github.io/datavis

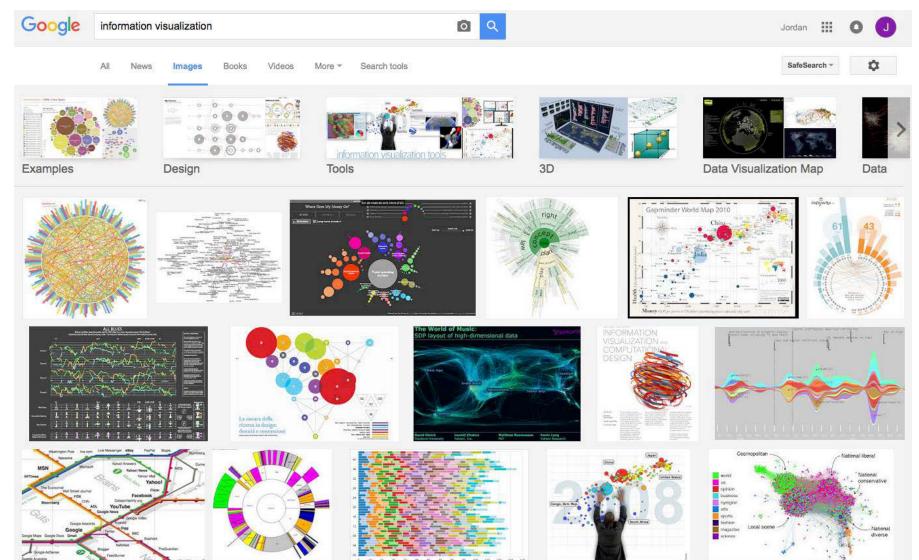
About this course



What is visualization?



What is visualization?



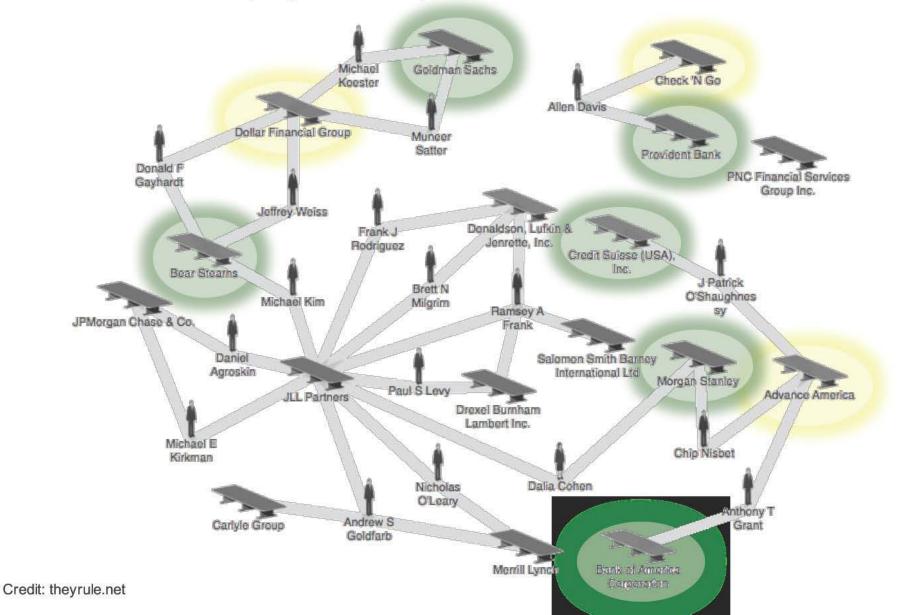
Perhaps a more helpful question:

What are some ways a "visualization" can be **useful**?

Does it help you spot trends?

More info here: http://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak

Does it help you explore?

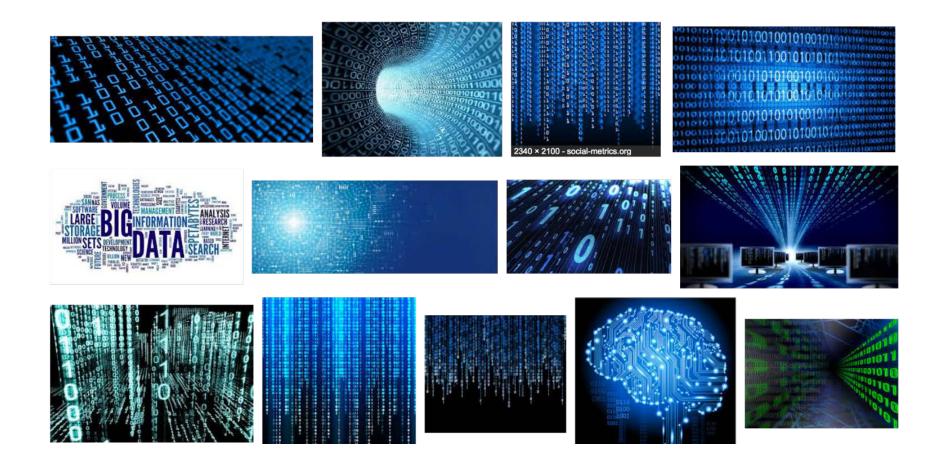


Does it tell a story?

Visualization (def.)

Visual representations of data that reinforce human cognition

Wait... what is "data"?



Data: a definition

Data is a set of *variables* that capture various aspects of the world:

Tuition rates, enrollment numbers, public vs. private, etc.

Data: a definition

A dataset also contains a set of *observations* (also called *records*) over these variables. For example:

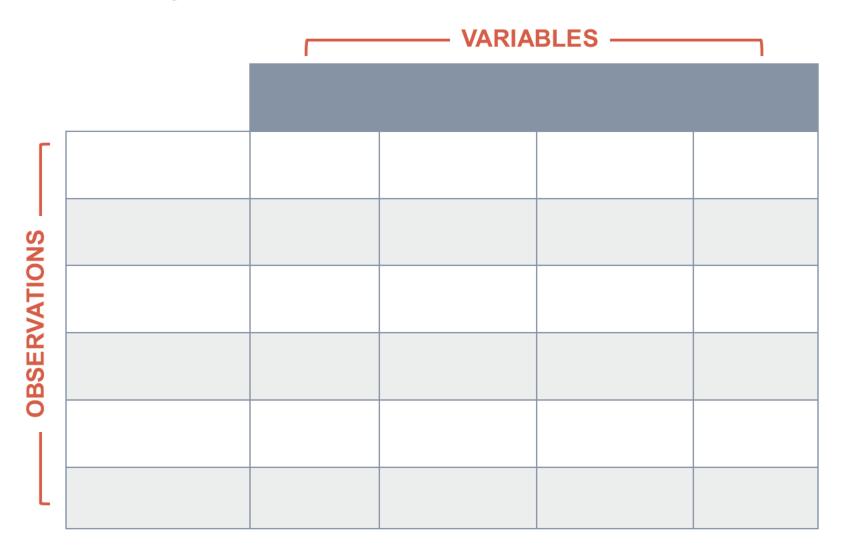
tuition = \$46,288, *enrollment* = 2,563, *private, etc.*

Data: a definition

A dataset also contains a set of *observations* (also called *records*) over these variables. For example:

tuition = \$16,115, *enrollment* = 28,635, *public, etc.*

One way to think about this:



Another way to think about this

VARIABLE

OBSERVATIONS

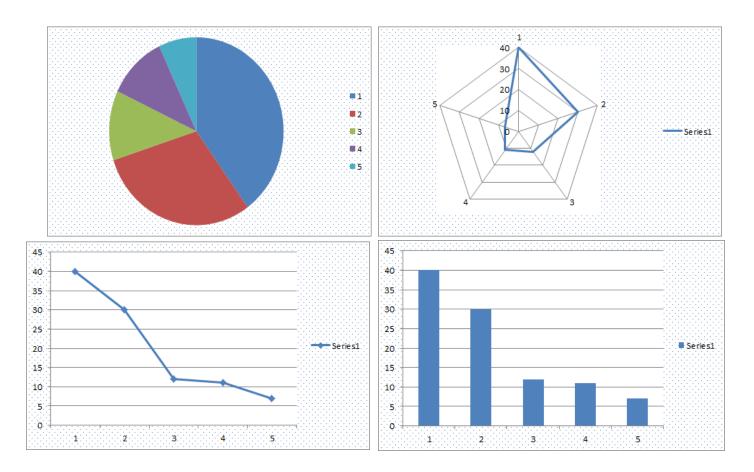
Why is this important?

- Data have dimensions
- Visualizations have dimensions, too
- To build visualizations, we need to map data dimensions to visual dimensions

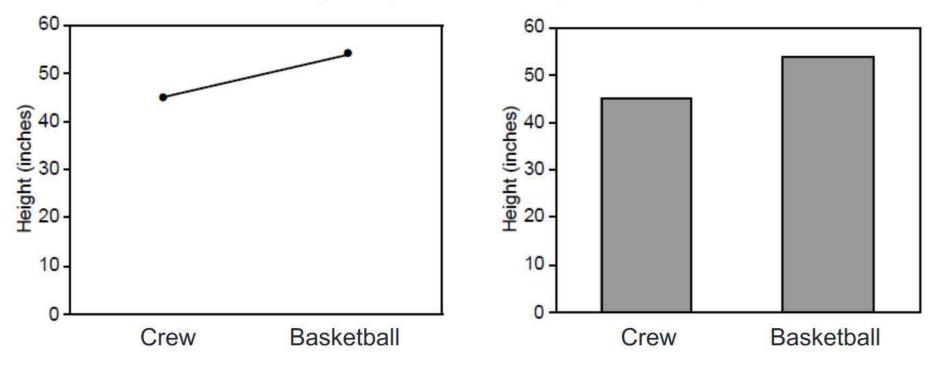
Key question for this course

Which data dimension should be mapped

to which visual dimension?

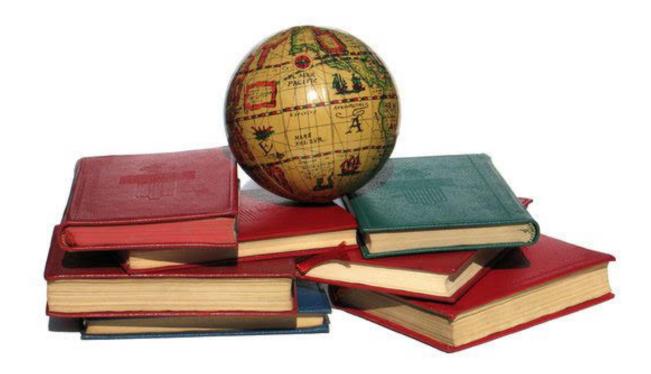


Answer: it depends

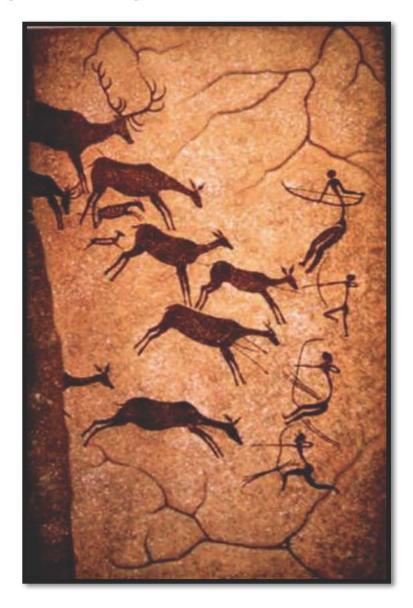


Average Height for Youth Sports Participants

A quick history lesson...

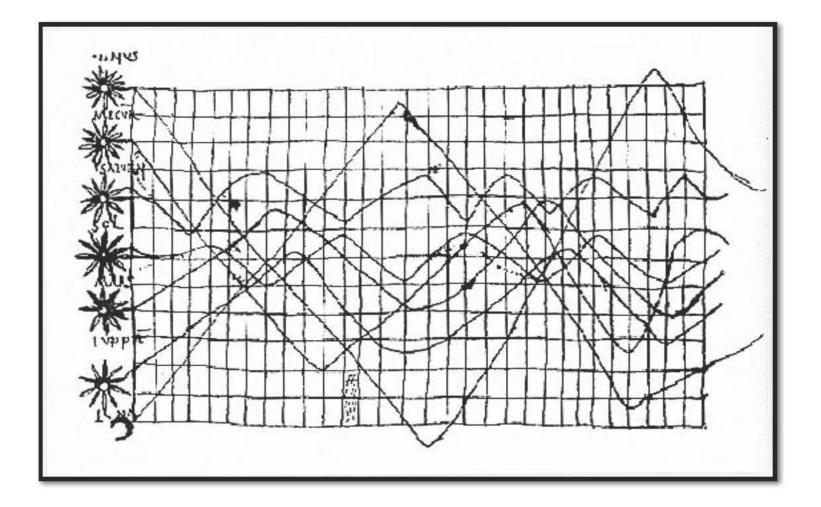


(Incomplete) History of Visualization: 15,000BC



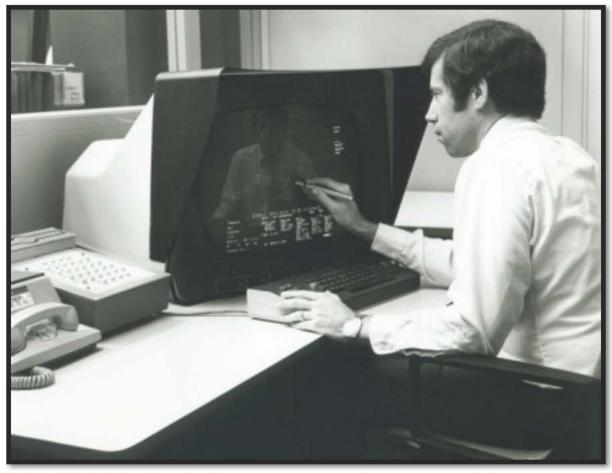
15,000 BC. Laxcaux, France

(Incomplete) History of Visualization: 900s



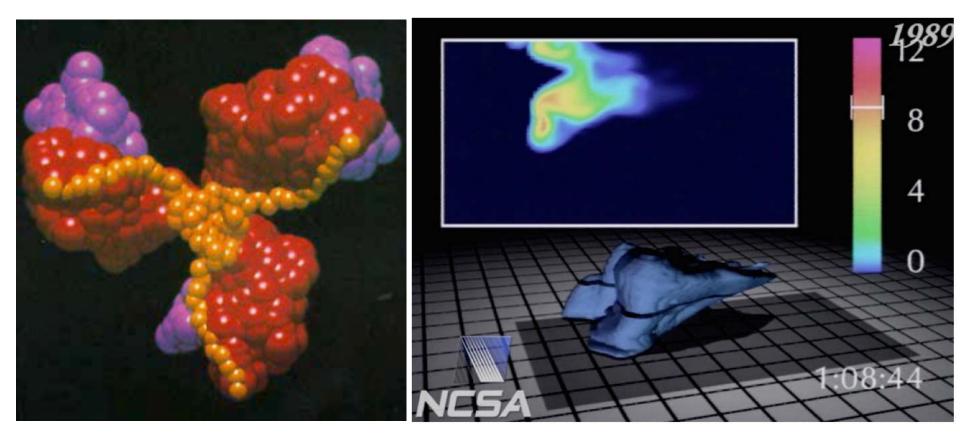
"De cursu per zodiacum", illustrator unknown

(Incomplete) History of Visualization: 1970s



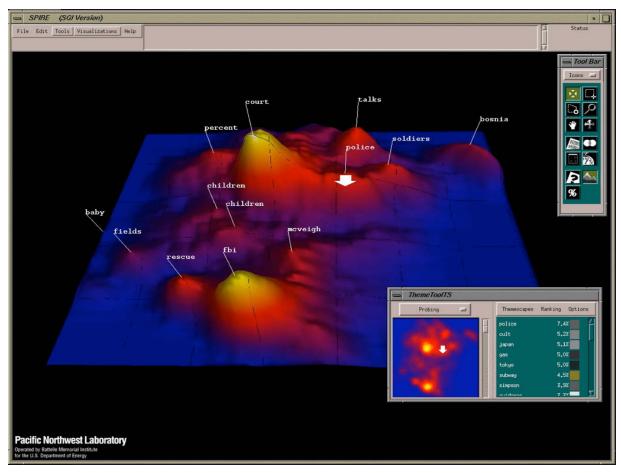
- CAD/CAM, building cars, planes, chips
- Starting to think about: 3D, animation, edu, medicine

(Incomplete) History of Visualization: 1980s



- Scientific visualization, physical phenomena
- Starting to think about: photorealism, entertainment

(Incomplete) History of Visualization: 1990s

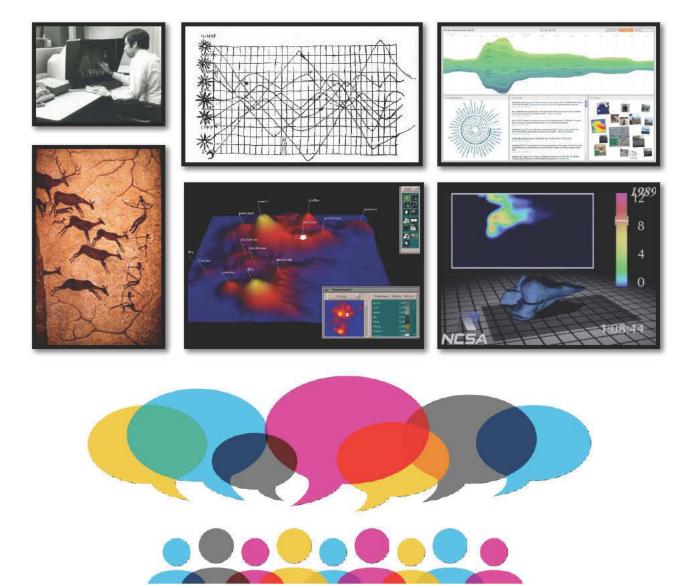


- Information visualization, storytelling
- Starting to think about: online spaces, interaction

(Incomplete) History of Visualization: 2000s

- Coordination across multiple views, interaction
- Starting to think about: sensemaking, provenance

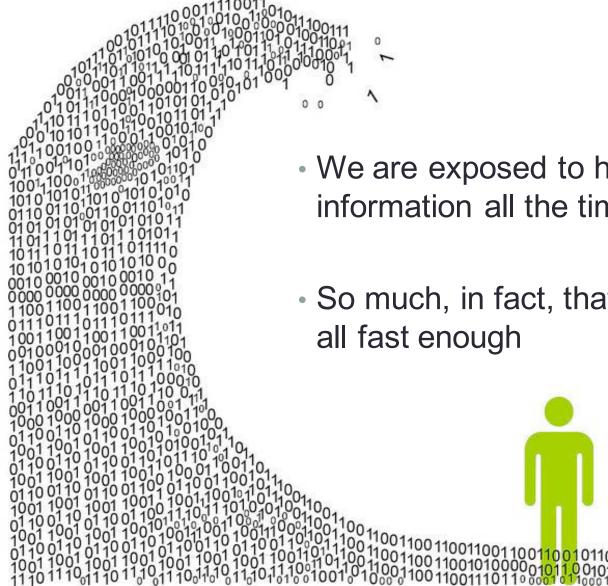
Discussion: what are they all trying to do?



Visualization helps shape mental models



Information overload



- We are exposed to huge amounts of information all the time
- So much, in fact, that we can't process it

Mental models

To cope, we construct **mental models:** abstracted, simplified versions of the world that are more manageable

110011001011001001

Mental Models: a Sketch

1. We tend to see what we expect to see

2. Mental models form quickly, & update slowly

3. New information gets incorporated into the existing model

4. Initial exposure interferes with accurate perception

Blur size

128px 64px

32px 16px 8px None

The good, the bad, and the ugly...

The good:

- Well-tuned mental models let us process information quickly
- Frees up more processing power to synthesize information

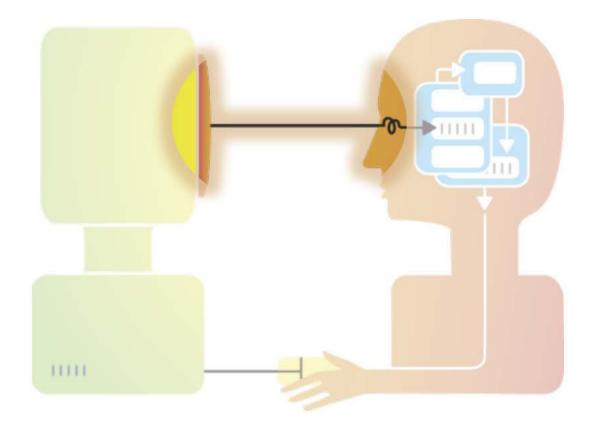
The bad:

- People (esp. experts) tend not to notice information that contradicts their mental model
- A "fresh pair of eyes" can be beneficial

The ugly:

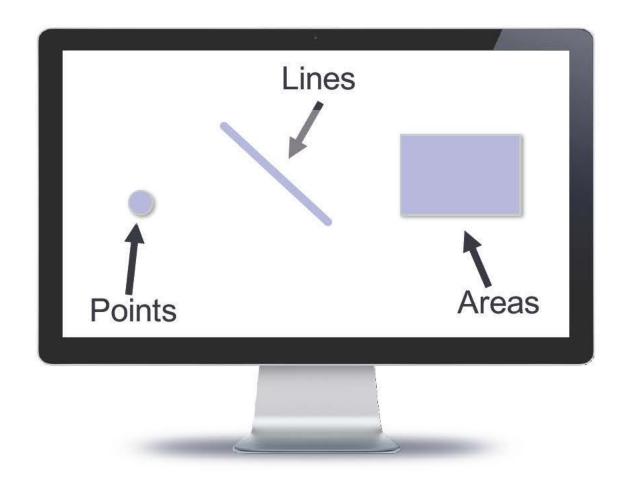
- Mental models are unavoidable: everyone has them, and they're all different
- **Key:** be aware of how mental models form, how they shape perception, and how to support (or challenge) them

So what do we have to work with?



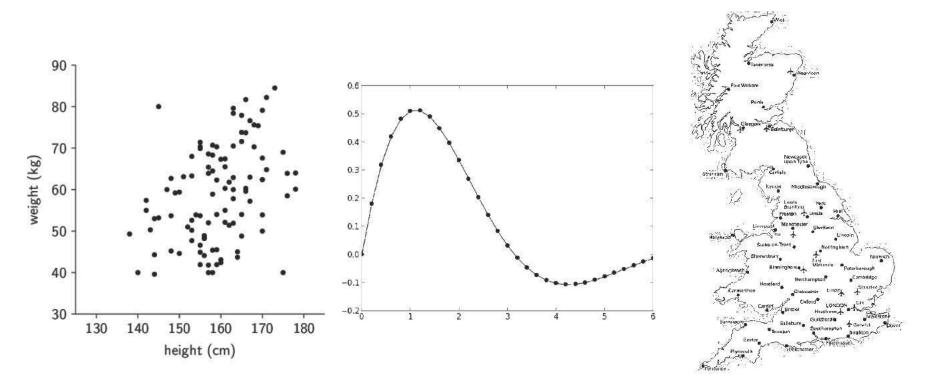
Graphical primitives

The images we draw are composed of marks: like ink



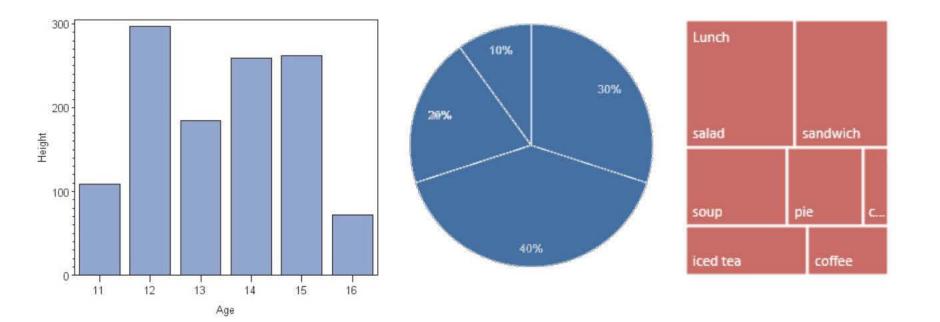
Visual dimension: position

- Encode information using where the mark is drawn
- Some examples:



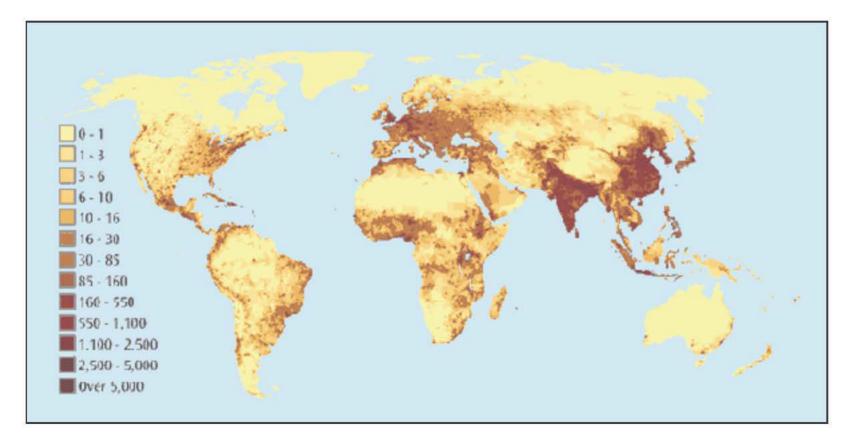
Visual dimension: size

- Encode information using how big the mark is drawn
- Examples:



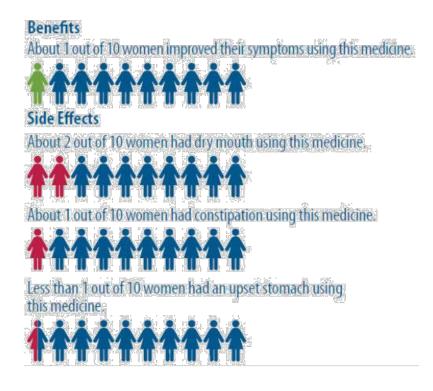
Visual dimension: value

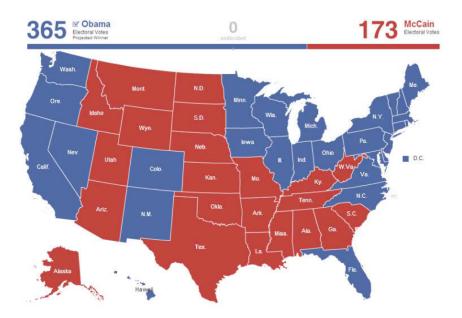
- Encode information using how dark the mark is drawn
- Example:



Visual dimension: color

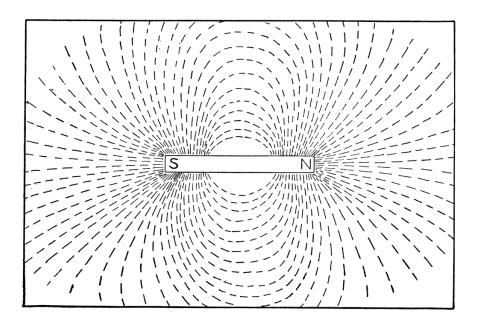
- Encode information using the hue of the mark
- Examples:





Visual dimension: orientation

- Encode information using how the mark is rotated
- Examples:



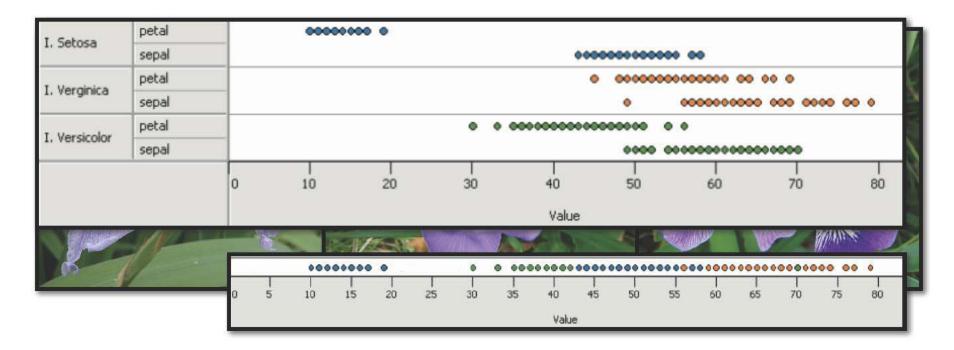
Visual dimension: shape

- Encode information using how the mark is shaped
- Examples:

What makes a **good** encoding?

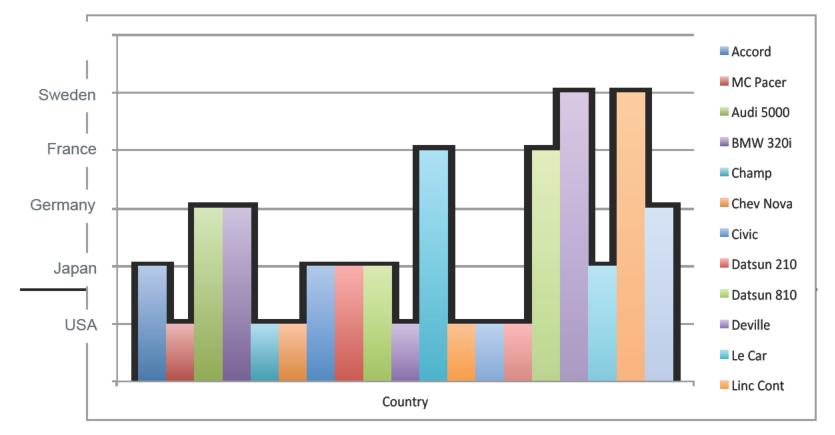
Principle 1: expressiveness

- Encodes all the facts
- Example:



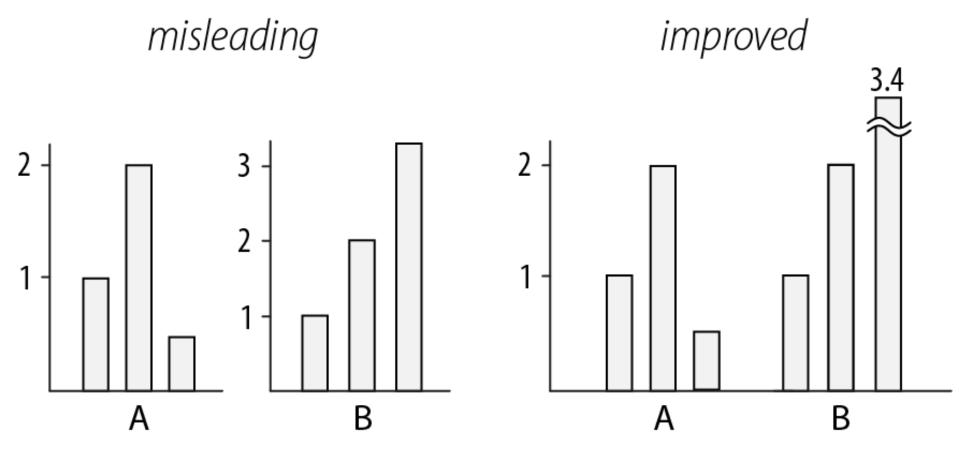
Principle 1: expressiveness

- Encodes only the facts
- Example:



Adapted from Mackinlay J (1986) Automating the design of graphical presentations of relational information.

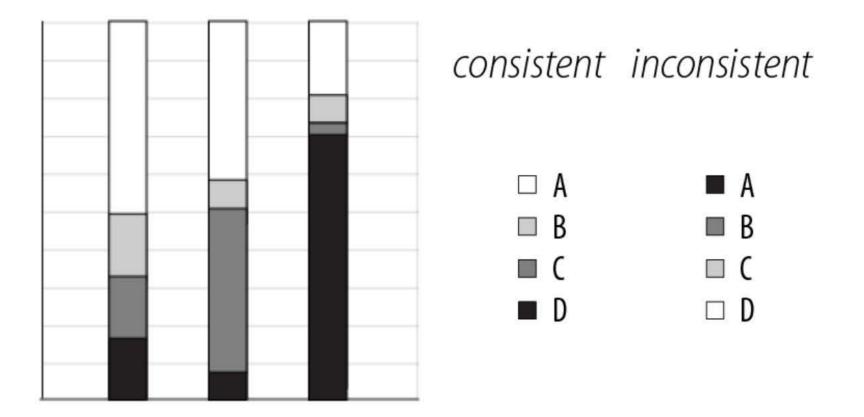
• Use **consistent axes** when comparing charts



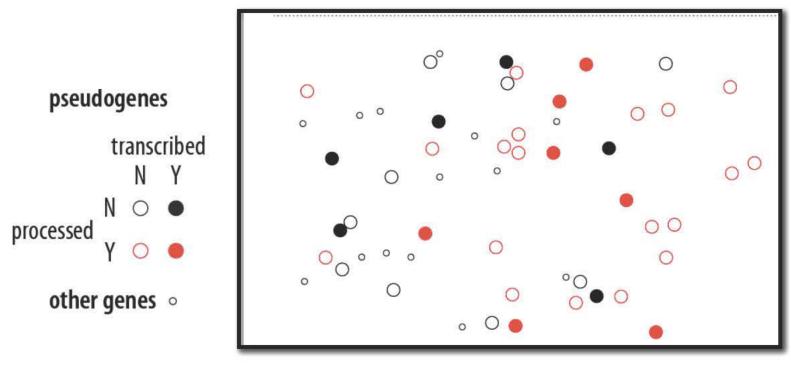
Raina SZ, et al. (2005) Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Res 15: 665-673.

M. Krzwinski, behind every great visualization is a design principle, 2012

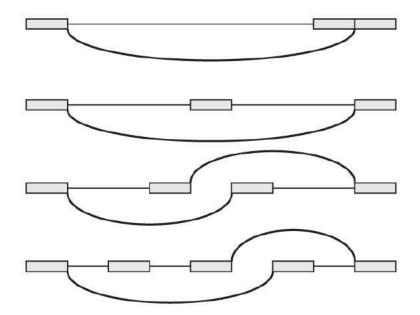
• A note on legends: order items according to appearance



- Visual variation should reflect and enhance the underlying variation in the data
- Avoid visually similar encodings for independent variables
- Example:



- Uniform size and alignment reduces visual complexity and aids interpretation
- Example:

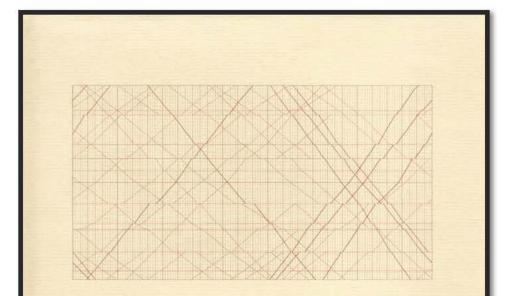


variation refactored

Fig. 1: Sharov AA et al. (2005) Genome-wide assembly and analysis of alternative transcripts in mouse. Genome Res 15: 748-754. Fig. 2: M. Krzwinski, behind every great visualization is a design principle, 2012

Tufte, 1983

"Above all else, show the data."



The Visual Display of Quantitative Information

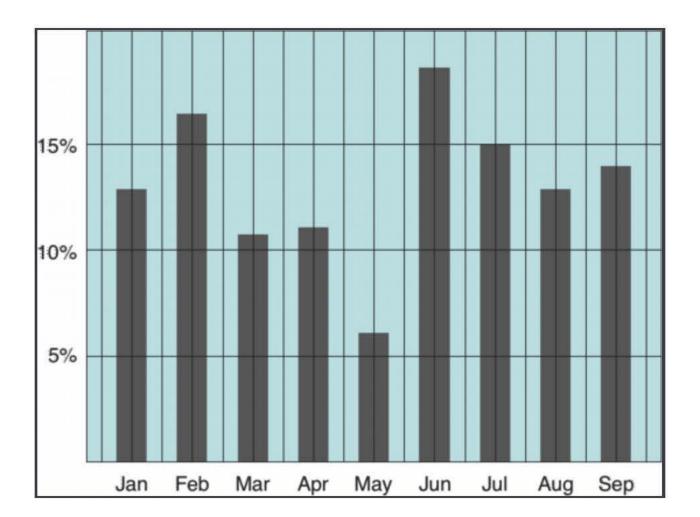
EDWARD R. TUFTE

Data-ink ratio = $\frac{\text{Data-ink}}{\text{Total ink used to print the graphic}}$

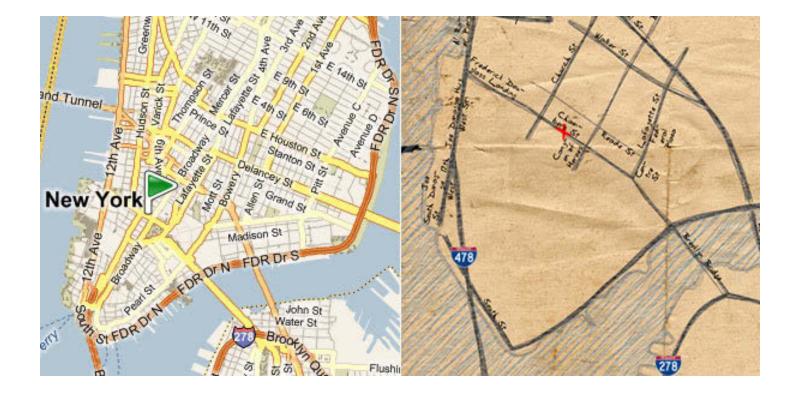
= proportion of a graphic's ink devoted to the non-redundant display of data-information

= 1 - proportion of a graphic that can be erased

Tufte: maximize the data-ink ratio



Familiar example

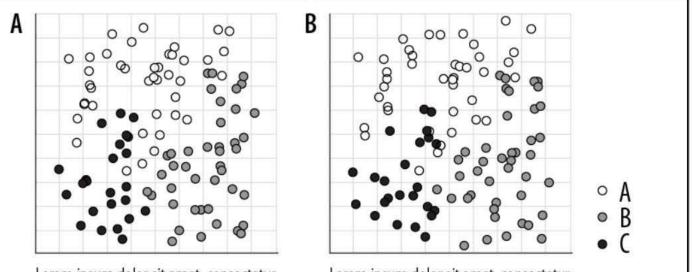


Discussion

- What do you think of the data-ink ratio?
- Consider ways to **maximize** it...

Principle 3: importance ordering

- Avoid unnecessary containment and repetition
- Example

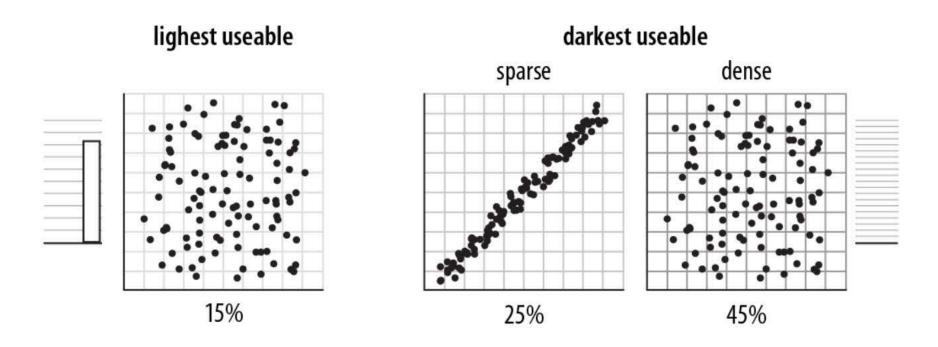


Lorem ipsum dolor sit amet, consectetur adipiscing elit. In ut mauris quis tellus

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In ut mauris quis tellus

Principle 3: importance ordering

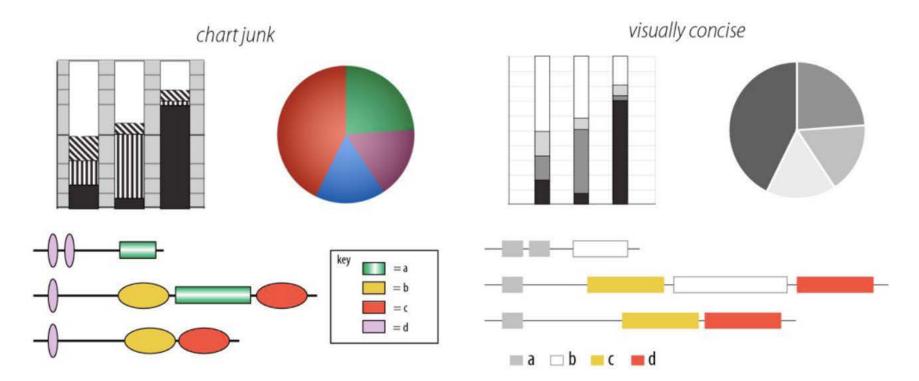
- Navigational aids shouldn't compete with data
- Avoid: heavy axes, error bars and glyphs



Heer J, Bostock M (2010) Crowdsourcing graphical perception: using mechanical turk to assess visualization design. Proceedings of the 28th international conference on Human factors in computing systems. Atlanta, Georgia, USA: ACM. pp. 203-212.

Principle 3: importance ordering

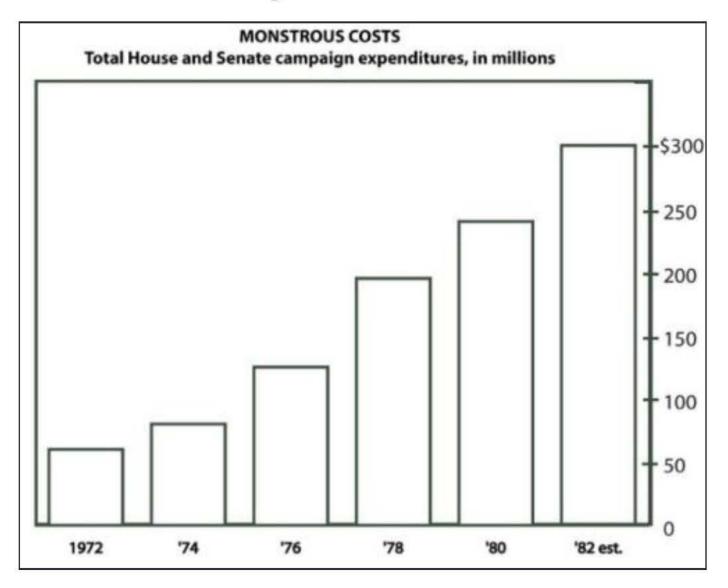
Simplify, simplify, simplify...



Sharov AA, et al (2006) Genome Res 16: 505-509. Peterson J, et al. (2009) Genome Res 19: 2317-2323. Thomson NR, et al. (2005) Genome Res 15: 629-640. DB, Ko MS (2005) Genome Res 15: 748-754.

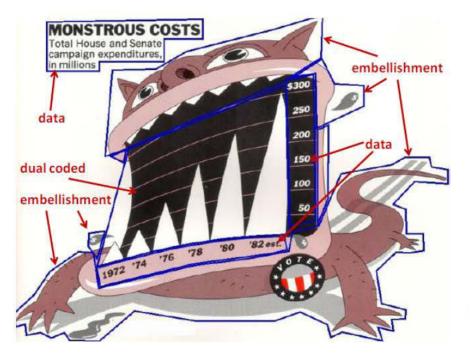
M. Krzwinski, behind every great visualization is a design principle, 2012

A caveat: "chart junk" and recall



Bateman et al. "Useful Junk? The Effects of Visual Embellishment on Comprehension and Memorability of Charts", CHI 2010

Chart junk and eye gaze



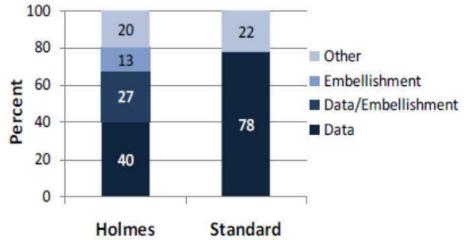


Figure 9. Percentage of on-screen time spent looking at different chart elements for Holmes and Plain charts.

Lab 1: Deconstructing Data Graphics

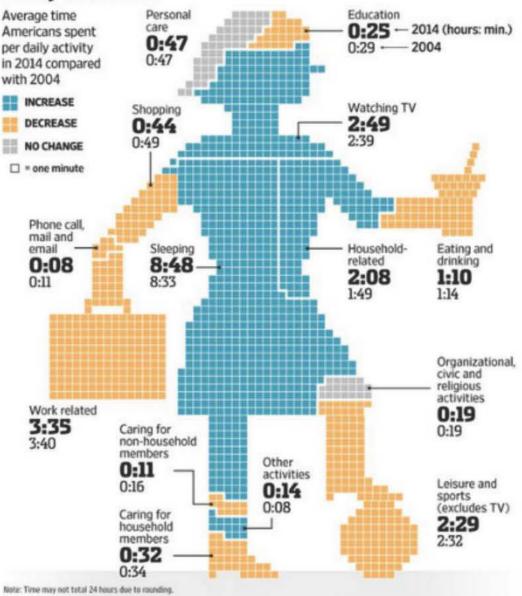
• Break into groups of 2-3 people, and go to:

jcrouser.github.io/datavis/lab1.html

- During this lab, we'll critique some professionally-made visualizations using these principles
- Try to think about the following questions:
 - What is the **first thing you notice** about this visualization?
 - What **point** is this visualization trying to make?
 - Who is the intended audience?
 - What is the visualization **doing well**?
 - What **problems** do you see with the visualization design?
 - Why do you think the designer made those choices?

WSJ News Graphics @WSJGraphics · 3m

Study shows Americans are working more, sleeping more and watching more TV on.wsj.com/1QRHRBf

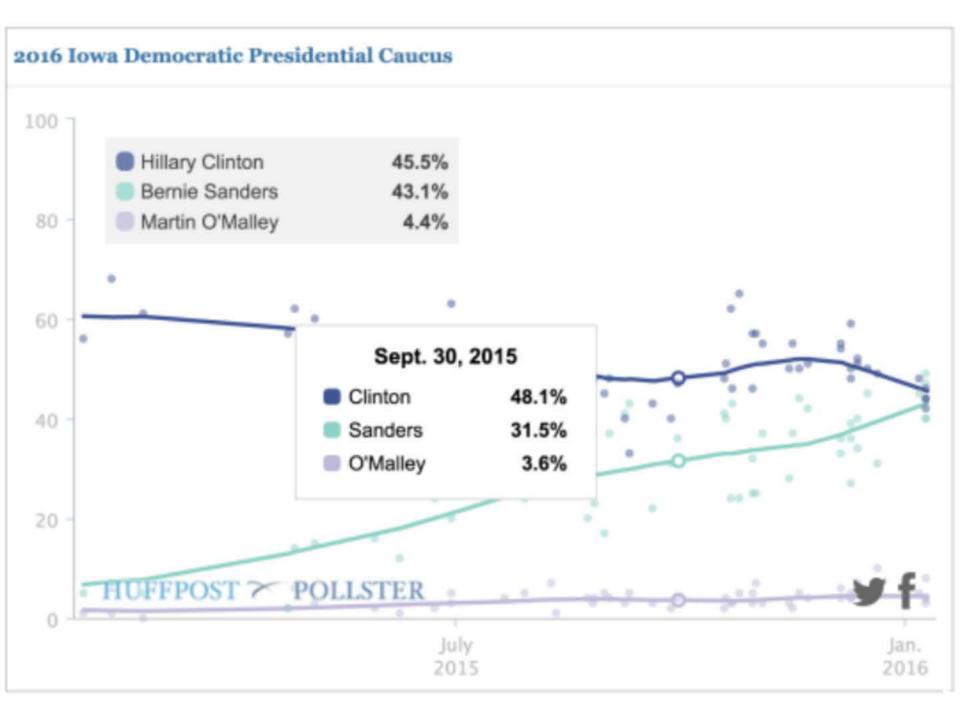


Source: Labor Department

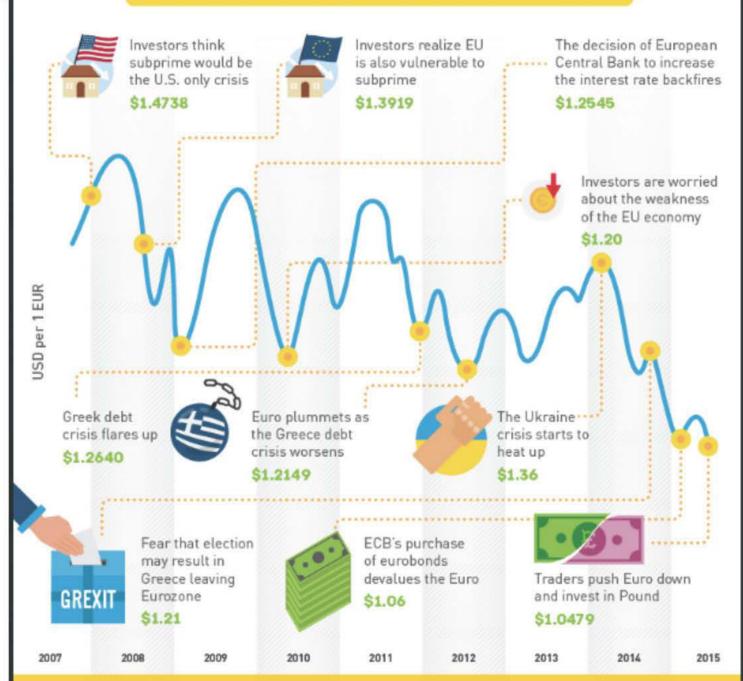
Christopher Kaeser/THE WALL STREET JOURNAL.

What your RAND SAYS ABOUT YOUR В USI NESS

a particular product

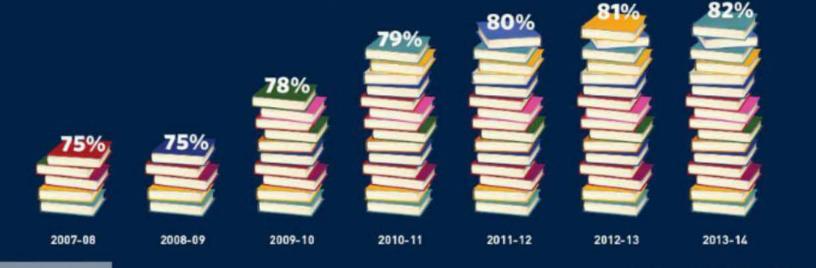


EVENTS CONTRIBUTING TO DROP OF EURO



UNDER PRESIDENT OBAMA, MORE STUDENTS ARE EARNING THEIR HIGH SCHOOL DIPLOMAS THAN EVER BEFORE

HIGH SCHOOL GRADUATION RATE



#LeadOnEducation

SOURCE: U.S. DEPARTMENT OF EDUCATION, NATIONAL CENTER FOR EDUCATION STATISTICS 57%

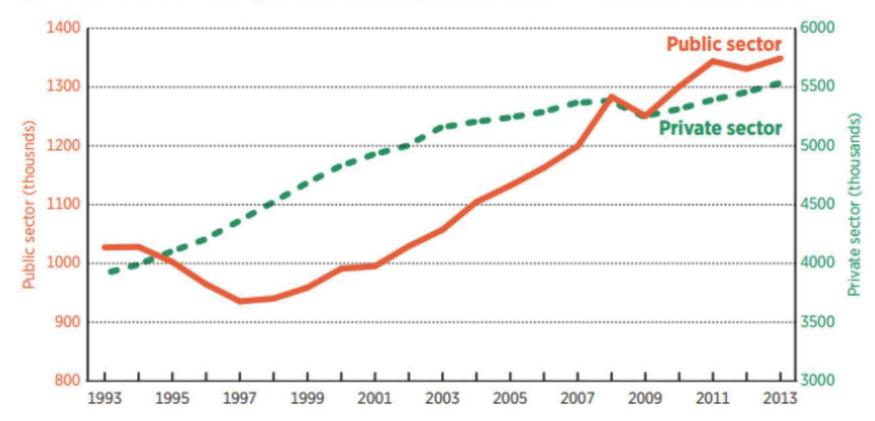
of Europeans are worried their personal information is not safe.

Illinois

Variable: Net Job Creation (Per 100) Employees, Same Sex and Age Group Year: 2000 Quarter:1 Sex: All and Age Group: Ages 19–21

Fig. 5.7 Job creation for young workers, by county, Illinois

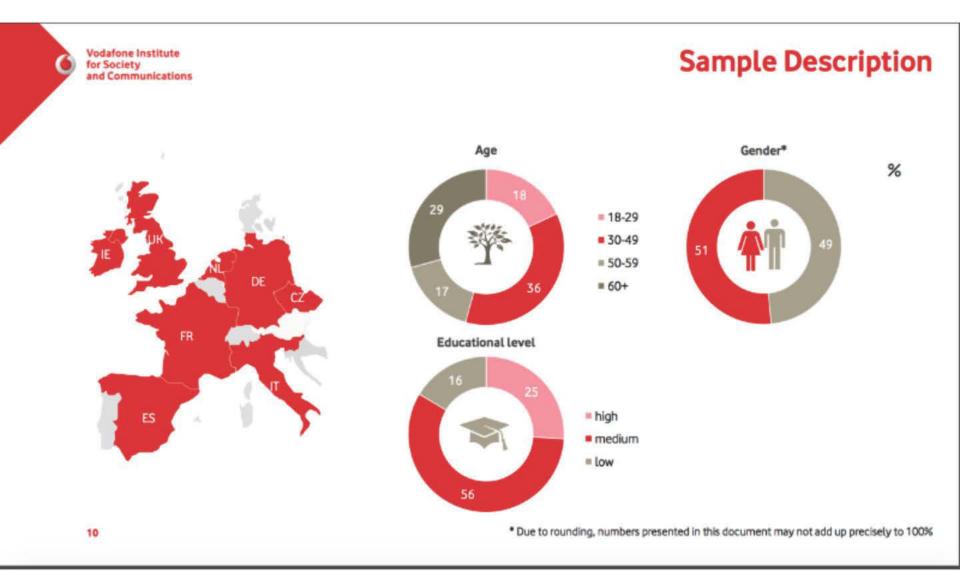
Figure 10: Public- and private-sector jobs (000s) in Ontario, 1993-2013



Source: Statistics Canada, CANSIM Table 282-0089: employment by class of worker and sex, seasonally adjusted and unadjusted; Ontario; Public sector and private sector employees; Both sexes; Seasonally adjusted (x 1,000).

20112015193,600117,161

Despite the hysteria, the number of refugees in the UK has actually fallen by 76,439 since 2011.



Coming up next

- Grammar of graphics
- Introduction to ggplot2
- Lab: Make a Scatterplot