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�Motivation

As we enter an age of increasingly larger and noisier data, dynamic interplay 
between human and machine analysis grows ever more important. Researchers and 
toolbuilders work to better understand and support the analytical process through 
systems that employ novel visual interactive interfaces along with computational 
support. These systems leverage the acuity of the human visual system as well as 
our capacity to understand and reason about complex data, nuanced relationships, 
and changing situations. In designing and building these systems, we rely on the 
intuition that the lived experience, perceptual advantage, and adaptability of the 
human analyst may prove crucial in areas where purely computational analyses fail. 
Similarly, by pairing the human analyst with a machine collaborator we hope to 
overcome some of the limitations imposed by the human brain such as limited 
working memory, bias, and fatigue.

With many promising examples of human-machine collaboration in the literature 
and everyday life, how do we tell if a new problem would benefit from human-
computer collaboration and how should we allocate computational tasks? At present, 
balancing the cost of building and deploying a collaborative system with the benefits 
afforded by its use is precarious at best. We rely heavily on researcher intuition and 
current field-wide trends to decide which problems to approach using collaborative 
techniques. While this has led to many successes, it has also led to the investment of 
significant time and energy into inefficient collaborative solutions for problems that 
might better have been (or have already been) solved by human or machine alone.

While we have come a long way from listing tasks best assigned to human or 
machine (Fitts 1951), appropriate function allocation in collaborative systems is still 
far from a perfect science (Sheridan 2000). However, the effectiveness of any 
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collaborative system is heavily dependent on how well it leverages the skills 
that humans and machines have to offer while minimizing waste. In the absence  
of a secret formula to prescribe this interplay, how do we balance the expected  
contributions of human and machine during the design process, and how do we 
evaluate the effectiveness of systems once we’ve built them? Herein, we seek to 
address these questions.

Toward that end, this chapter is organized into three main sections. Section 1 pro-
vides a broad definition of human computation and human-computer collaboration, as 
well as comparisons between a few well-known problems and their human-computer 
collaborative solutions. Section 2 considers the relative strengths of human and 
machine collaborators. Section 3 discusses the open problem of function allocation in 
human-computer collaborative systems, and will provide some insight on applying 
this knowledge during the design process. We hope that this chapter will leave the 
reader with an improved understanding of the complementary strengths of human and 
machine, as well as actionable information about best practices for real world design.

�1 - Beyond Crowdsourcing: Human Computation  
as Human-Computer Collaboration

In this section, we develop a working definition for the term human computation. It 
is important to note that human computation is not synonymous with terms such as 
collective intelligence, crowdsourcing, and social computing, although they are 
related. Before we continue, we will first define a few of these terms in the interest 
of developing a context for defining human computation. For a more detailed dis-
cussion on definitions of Human Computation, please see Chapter 9 - “Synthesis 
and Taxonomy of Human Computation”.

Crowdsourcing is the practice of obtaining services, ideas, or content by 
soliciting contributions from a large group of people.

Collective intelligence is the notion that groups of individuals working 
together can display intelligent behavior that transcends individual 
contributions.

Social computing is the intersection between people’s social behaviors and 
their interactions with technology.

In many cases, a single system could be classified under more than one of these 
headings. At the same time, none of them fully captures the notion of human com-
putation. As such, there are many working definitions of human computation in the 
literature:

…using human effort to perform tasks that computers cannot yet perform, …  
(Law and von Ahn 2009)
…a technique that makes use of human abilities for computation to solve problems. 
(Chan et al. 2009)
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A computational process that involves humans in certain steps… (Yang et al. 2008)
…systems of computers and large numbers of humans that work together in order to 

solve problems that could not be solved by either computers or humans alone. (Quinn and 
Bederson 2009)

Working from these definitions, we can begin to come to consensus regarding 
what constitutes human computation. First, the problem must involve some form of 
information processing. This may occur as part of an algorithmic process, or may 
emerge through the observation and analysis of technology-mediated human behav-
ior. Second, human participation must be integral to the computational system or 
process. In this work, we do not consider systems with only superficial human 
involvement to fall under the umbrella of Human Computation.

We can think of human-computation as a kind of human-computer collaboration. 
In this context, collaboration as defined as a process in which two or more agents 
work together to achieve shared goals, and human-computer collaboration as col-
laboration involving at least one human and at least one computational agent 
(Terveen 1995). This has also been called mixed-initiative systems (Horvitz 1999). 
In a mixed-initiative system, both the human and the machine can initiate action, 
access information and suggest or enact responses (Thomas and Cook 2005). The 
field of Visual Analytics is a perfect example of human-computer collaboration, as 
Visual Analytics systems leverage both analyst intelligence and machine computa-
tion in a collaborative effort to solve complex problems.

Under this definition, we see that crowdsourced computation is just the tip of the 
HC iceberg. Along a continuum between human-heavy and machine-heavy collabo-
ration such as the one posed by Bertini and Lalanne in 2009, crowdsourced compu-
tation falls at one extreme:

With few exceptions, the computational burden falls almost entirely on the 
human collaborators in typical crowdsourcing applications such as image labeling 
and text translation. Human-based genetic algorithms also fall on the human-heavy 
end of the continuum, as the human agents determine both population fitness and 
genetic variation. In these systems, the primary role of the machine collaborator is 
to distribute tasks and collect results, a role with relatively trivial computational 
requirements. On the other extreme, algorithms for unsupervised learning functions 
with near autonomy from the human collaborator. Here, the human’s role is to set 
the parameters of the algorithms and to verify the results. While less common, there 
are an increasing number of algorithmic approaches that attempt to maximize the 
contributions from both collaborators.

Without question, the term human computation spans a wide range of possible appli-
cations and computational distributions. Among all these, many of the most interesting 
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and successful human computation systems not only balance the contribution of human 
and machine, but also leverage the complementary computational strengths of both par-
ties. In the following sections, we will explore some of these strengths and how they can 
impact the distribution of labor in a human computation system.

�2 - Complementary Computation

Both human and machine bring to the partnership varying strengths and opportuni-
ties for action, and during collaboration, each must be able to perceive and access 
these opportunities in order for them to be effectively leveraged. These affordances 
define the interaction possibilities of the team, and determine the degree to which 
each party’s skills can be utilized during collaborative problem solving. The set of 
problems warranting a collaborative technique is equivalent to the set problems 
where there is an opportunity to effectively leverage affordances on both sides of the 
partnership in pursuit of the solution.

Instead of deciding who gets (stuck with) which task, we can begin to reason 
about which party can best contribute to the collective goal at each stage. The 
answer may not be only the human, or only the machine, but could in fact be both. 
By designing such that both human and machine are aware of the affordances made 
available to them by their collaborators, we encourage the development of more 
flexible procedures for collective problem solving.

�Relative Strengths of Human and Computers

Fitts made the first published attempt in 1951 categorize tasks when he created a list 
of tasks the humans are better at and machines are better at (see Table 1). This is 
often abbreviated in the literature as HABA-MABA. While for many years this list 
was viewed as mantra for the division of labor, frequent and consistent technologi-
cal advances in computation, automation and robotics make function allocation and 
the HABA-MABA list a moving target. The distinction between human and machine 

Table 1  An outdated comparison of the relative strengths of humans and machines

Humans are better at: Machines are better at:

Detecting small amounts of visual  
and auditory energy

Responding quickly and applying great force 
smoothly and precisely

Perceiving patterns of light or sound Performing repetitive, routine tasks
Improvising/using flexible procedures Storing information briefly, then erasing it completely
Storing large amounts of information  

and performing selective recall
Reasoning deductively

Reasoning inductively Multitasking
Exercising judgment
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is now less clear. For example, while in the 1950s humans were indeed better at 
storing large amounts of information, today’s machines far exceed the capacity pre-
viously imagined, and the advent of distributed storage is rapidly enabling the out-
pacing of human memory by machines.

While Fitts’ list was aimed at simply comparing the two for basic labor division, 
for many years it was incorrectly interpreted as gospel for function allocation for 
human-machine collaborative systems. Jordan (1963) criticized this approach stat-
ing that the underlying foundation should be that humans and machines are comple-
mentary rather than antithetical. Price (1985) also supported this view, arguing that 
function allocation could be better viewed as an interactive process rather than a 
divisive listing and that there may exist several optimal solutions for a given prob-
lem. Although the comparative approach to division of labor in human-computer 
collaborative systems was unwarranted, Fitts’ list laid the foundation for thinking 
about the respective strengths of humans and machines.

�Affordances: A Changing Perspective

In recent years, researchers have argued that the original perception of function 
allocation and Fitts’ list no longer makes sense (Sheridan 2000; Dekker and Woods 
2002). Dekker and Woods (2002) also provided counterargument to the validity of 
Fitts’ list. They discussed how human-machine collaboration transforms human 
practice and forces analysts to adapt theirs skills and analytics processes. They 
argue for a shift in attention, moving away from allocation of tasks to a focus cen-
tered on how to design for harmonious human-machine cooperation. That is, how 
do we get humans and machines to play nicely, and work effectively? In response, 
a more recent framework (Crouser and Chang 2012) categorizes tasks based on 
relative strengths or affordances—opportunities for action. For a listing of some of 
the affordances they examined, see Table 2.

Human computation is an ideal approach to problems where there is an opportu-
nity to leverage both human and machine affordances in pursuit of the solution. By 
framing potential collaboration in terms of the affordances at our disposal, we can 
then consider which of these affordances could be used to approach a problem and 
construct a solution.

Table 2  A modern comparison of human vs machine affordances

Human Affordances Machine Affordances

Visual perception Computational Power
Spatial ability Scalable, persistent storage
Linguistic ability Efficient/reliable data transfer
Creativity Freedom from bias
Adaptability Precision
Sociocultural awareness Parahuman sensing
Expertise/lived experience Environmental Tolerance
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�3 - Effectively Leveraging Human and Machine Affordances

The success of human-computer collaborative systems hinges on leveraging the skills 
of both the human and the computer. That said, in order to address the problem of bal-
ancing and allocating workload in a human-computer collaborative system, it is first 
necessary to explore the space of problem difficulty relative to human and machine.

While problem difficulty for a machine can be defined as space and time com-
plexity, for the human we propose that problem difficulty is attributed to two main 
sources: knowledge necessary to solve the problem and time investment required to 
solve a problem. The level of difficulty for one party may not necessarily transfer to 
the other. For instance, some problems such as character recognition are inherently 
easy for a human and can sometimes be performed in constant time but can be com-
putationally expensive or unsolvable for the machine. The inverse can also be true. 
We can think about the problem space as having two orthogonal dimensions: human 
difficulty and machine difficulty. Figure 1 depicts some well-known sample prob-
lems within in this space.

In this diagram, problems appearing in the lower left region are trivial; that is, 
they are comparatively easy for both humans and machines. These problems, such 

 

Fig. 1  a matrix of example problems based on respective difficulty levels for humans and machines
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as arithmetic or simple shape rendering, generally do not warrant a human-computer 
collaborative solution. As we move to the right along the x axis, we encounter many 
of the problems addressed in early human computation systems: image labeling, 
character recognition, language processing, etc. These problems are difficult for 
machines, but relatively straightforward for humans. Here, the overhead cost 
incurred by involving human processing power is minimal compared with the 
resources required to achieve comparable performance using a machine.

As the field of human computation progresses, we are becoming more invested 
in applying collaborative techniques to solve problems that are difficult or impos-
sible for either humans or machines alone, but which may be solvable through col-
laboration. In these problems, we are especially interested in how to best allocate 
the computational resources of the human and machine collaborators, allowing each 
party to play to its strengths.

Technically speaking, a human can simulate any process the machine can execute. 
After all, we designed the algorithms in the first place. Given an understanding of the 
process, enough paper and a sufficient supply of pencils, a human operator could 
write out the contents of each register, perform each bitwise operation, and record 
each result by hand. However, the time and resources required to compute exactly the 
same result are exorbitant. In addition, humans are susceptible to fatigue, and we are 
arguably limited by the capacity of our working memory and unreliable recall. In this 
sense, human operations are expensive, and there are cases where it is possible to 
reduce the number of human operations while maintaining optimal performance.

Consider the following example (Shahaf and Amir 2009): Imagine that we are 
given n randomly selected samples that we wish to classify. We know that the clas-
sifiers are simple threshold functions:
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with the value of w depending on the input. Assume that we do not know w, but a 
human can classify the data correctly without too much trouble. We can think of the 
human as an oracle, a black box which is able to correctly answer specific questions 
in a single operation. Using the human as an oracle, there are several ways to 
approach this problem, each with benefits and drawbacks:

	1.	 We could ignore the human and use a pure machine computational approach, first 
sorting the set of samples according to their x values and then choosing a random 
threshold value that falls between the lowest and highest values. This requires 
O(n log n) time to sort the list, and guarantees that at least two of the samples will 
be classified correctly. This is not a very promising bound on accuracy.

	2.	 We could use a pure human computational approach, asking the human to 
classify each sample in the dataset. Because as we assumed that the human can 
always classify samples correctly, this method guarantees 100 % accuracy. In 
addition, this method requires c × n = O(n) operations, where c corresponds to the 
amount of time it takes the human to classify one sample. Under the usual met-
rics for evaluating algorithmic complexity, the method is technically “faster”. 
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However, the value of the constant c may be enormous, which means that for all 
reasonably-sized input sets, this approach really isn’t much better.

	3.	 Finally, we could try a collaborative solution. First, the machine sorts the set of 
samples according to their x values, requiring n log n operations. Next, the human 
is asked to classify the sample that falls in the middle of the sorted list. If she 
answers “1”, we know that all the samples above should also be labeled “1”. 
Similarly, if she answers “0”, we know that all the samples below should also be 
labeled “0”. From here, the human is recursively asked about the middle point in 
the remaining half of the list that remains unlabeled. This is simply binary search, 
which implies that the human will be asked to classify at most log n samples for 
a cost of c × log n. Using this algorithm, we are able to dramatically reduce the 
workload for the human operator while maintaining 100 % accuracy simply by 
being clever regarding which samples to ask her about.

In this example, the third approach is clearly superior to the other two in terms of 
maximizing accuracy and efficiency. However, there are several key assumptions 
that need to be dressed. For example, what is the scale of the constant c? In human 
computation, we argue that this scale depends on the affordance being leveraged. 
This is perhaps most readily apparent in the field of information visualization. 
Through visualization, we transform the task of assessing abstract numerical infor-
mation to evaluating visual information, leveraging the human visual processing 
system and thereby decreasing the per-operation cost c. As designers, it is important 
to consider the implications of leveraging various combinations of affordances 
between human and machine.

A few caveats: under this model, there is an explicit assumption the human ora-
cle will always be able to provide the correct answer at a fixed (albeit large) cost. In 
reality, humans don’t work this way. Intuition and experience indicate that humans 
eventually get tired or bored, and as a consequence their speed and accuracy suffer. 
Even under optimal working conditions, humans are fallible; instead of modeling 
the human as omniscient, we may wish to model human oracles as accurate with 
some probability p < 1. This fallibility may require measures to ensure that the over-
all probability of correctness is higher than that of any single oracle. In addition, the 
human may wish to request more information from the system before she can make 
a determination. This mutual querying behavior cannot be captured by an oracle 
model; we assume that the oracle takes input, and gives a correct answer using only 
that input. Because of this, it is important to continue to develop more nuanced 
models human of behavior in human computation systems, and to design metrics by 
which we can more robustly evaluate algorithmic complexity and performance in 
human-machine collaborative systems.

�Conclusion

While history has often depicted human and machine as antithetical, we argue that 
in many cases their relative strengths prove complementary. Though originally 
designed simply to relieve human operators of tedious tasks, today it is perhaps 
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more fitting to view machines as collaborators in the pursuit of solutions to chal-
lenging problems. We hope that this chapter has left the reader with a better under-
standing of some of the intricacies of balancing human and machine contributions 
in human computation systems as well as candidate methods for evaluating the 
optimality of that balance. We believe that work in the emerging field of human 
computation will help us to expand our understanding of what is computable, and 
that human-computer collaboration could lead to significant advances in tackling 
currently intractable problems.
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