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Toward Theoretical Techniques for Measuring the Use of
Human Effort in Visual Analytic Systems

R. Jordan Crouser, Member, IEEE, Lyndsey Franklin, Alex Endert and Kris Cook

Abstract—Visual analytic systems have long relied on user studies and standard datasets to demonstrate advances to the state of
the art, as well as to illustrate the efficiency of solutions to domain-specific challenges. This approach has enabled some important
comparisons between systems, but unfortunately the narrow scope required to facilitate these comparisons has prevented many of
these lessons from being generalized to new areas. At the same time, advanced visual analytic systems have made increasing
use of human-machine collaboration to solve problems not tractable by machine computation alone. To continue to make progress
in modeling user tasks in these hybrid visual analytic systems, we must strive to gain insight into what makes certain tasks more
complex than others. This will require the development of mechanisms for describing the balance to be struck between machine
and human strengths with respect to analytical tasks and workload. In this paper, we argue for the necessity of theoretical tools for
reasoning about such balance in visual analytic systems and demonstrate the utility of the Human Oracle Model for this purpose in
the context of sensemaking in visual analytics. Additionally, we make use of the Human Oracle Model to guide the development of a
new system through a case study in the domain of cybersecurity.

Index Terms—Theoretical models, human oracle, visual analytics, mixed initiative systems, semantic interaction, sensemaking.

1 INTRODUCTION

In an age of increasingly complex data, the dynamic interplay be-
tween human and machine analysis grows ever more important. By
pairing the human analyst with a machine collaborator, we hope to
overcome some of the human’s limitations such as working memory,
bias, and fatigue. Such human-machine collaborative systems rely on
the intuition that the domain expertise and perceptual advantage of the
human analyst may provide as a critical boost in areas where purely
computational analyses fail. We can think of such collaborative sys-
tems as distributed cognitive tasks, where information is both internal
(the human’s mental model) and external (stored explicitly by the ma-
chine) [82]. This human-machine hybrid approach has been critical in
the support of sensmaking [20, 61] where visual analytic environments
are often called on to provide the medium of interaction between hu-
man and machine by combining intuitive, interactive interfaces with a
strong computational backbone. The result has been a diverse array of
contributions across a broad range of topical domains in an effort to
advance the art of visual analytics.

The development of tools for streaming analysis has to date been
concerned almost entirely with questions of tractability. We build sys-
tems that capitalize on things we believe humans do well, such as rec-
ognizing patterns, in hopes that human input will enable us to make
progress in areas where purely computational methods fail. Despite
the staggering volume of applications in both the literature and real-
world, how do we tell if a new problem would benefit from a similar
strategy – and if so, how do we balance the computational workload?
While traditional user studies can often help us determine whether our
system was useful in solving a particular problem, they fall short of
explaining why we see the results we do. This makes it challenging to
justify the claims we make about a novel system’s performance rela-
tive to other systems. In addition, this makes it extremely difficult to
generalize what we learn from solving one problem to others we might
want to solve in the future. For example, it is difficult to explain why

• R. Jordan Crouser is at Smith College. Email: jcrouser@smith.edu.
• Lyndsey Franklin and Kris Cook are at Pacific Northwest National

Laboratory. Email: lyndsey.franklin@pnnl.gov, kris.cook@pnnl.gov.
• Alex Endert is at Georgia Tech. Email: endert@gatech.edu.

established strategies for building visual analytic systems on static data
may fall apart when applied to streaming data, even when the systems
were designed for use on similar tasks in similar domains [7, 24, 33].

But what if we could describe the computational power of human-
computer collaborative systems the same way we describe the com-
plexity of a traditional algorithm? The ability to model the computa-
tional resources afforded by humans in a similar fashion to machine
resources would begin to unify findings across the research efforts of
visual analytics regardless of the specific application domain or data
format. To help us do this, we can draw on the language of complexity
theory, which takes the study of solvable instances of problems to a
deeper level by asking questions that get at the fundamental nature of
the problem itself and how we might go about solving it more effec-
tively: Does randomization help? Can the process be sped up using
parallelism? Are approximations easier? By understanding how sys-
tems make use of various resources, we can begin to group algorithms
and problems according to what it takes to solve them. This abstrac-
tion also enables us to investigate the effect of limiting these resources
on the classes of problems that can still be solved, which is of extreme
importance in the context of streaming analysis.

The remainder of this paper is organized as follows: we begin by
reviewing some preliminary techniques for describing analytic tasks in
visual analytic systems (Section 2). Next, we argue for the necessity
of theoretical tools for reasoning about visual analytic systems (Sec-
tion 3). We then demonstrate the utility of one simple tool, the Human
Oracle Model, for evaluating the balance of human and machine work
in the context of streaming visual analytics (Sections 4, 5, and 6), as
well as for designing new systems through a case study of several ex-
amples of streaming data analysis (Section 7). For convenience, we
have chosen a single domain (cybersecurity) for exploring the utility
of these theoretical models for describing human+machine analysis;
in Section 8, we briefly highlight the transferability of these models to
other domains. Finally, we discuss the limitations of this model, and
propose possible extensions for future study.

2 BACKGROUND

Substantial work has been done to further our understanding of how
analysts develop their expertise, and how this expertise may be ex-
ploited by a system in order to perform more nuanced analysis. Ad-
ditionally, there have been a wealth of successful explorations into
computational methods that can assist analysts in performing at their
highest levels. Our work is inspired by these previous efforts to lever-
age human expertise in computation, and in the following sections we
will highlight some particularly influential work in these areas.
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2.1 Cognitive Models of User Actions
Models of human cognition have been proposed and studied for
decades and have formed the basis of what we know as human-
centered design. Early work in the development of the GOMS
model [14] and its variations have been applied to describe how peo-
ple achieve goals through their selections between alternative meth-
ods. While these advances provided a critical foundation for under-
standing human decision-making, a more complete model a human
user’s task must include not only what their goal is, but also the con-
ditions under which they are trying to meet that goal. This includes
the information available to the human, the actions they might take
to effect change, what they see and interact with, and even what they
might do wrong [42]. Critical design decisions about the trade-offs
between human and machine processing must be based on this task
analysis if an interactive system has any chance to succeed [42]. Im-
provements to conditions through such task analysis is often measured
in performance duration [26]. That is, if a person can achieve their
goals faster than they could before, improvements are considered to
have been made. While this may be a useful measure under some
conditions, we suggest that this may be an overly narrow definition
of improvement. To provide us with more nuanced understanding of
success, additional measures such as task complexity can be formally
defined such that they can be evaluated for improvement as well.

Since the development of the GOMS model, there have been many
other notable efforts to describe and predict the performance of inter-
face designs. GLEAN [45] offers a computer-based tool for gener-
ating quantitative predictions of usability and procedural aspects of
an interface design based on a supplied GOMS model. The EPIC
Architecture [43, 44, 46] models human multi-modal and multi-task
performance, and includes important factors such as sensory-motor
processes. The UFuRT framework [81] underscores user analysis as
the first phase of design, and emphasizes the importance of account-
ing for differences in cognitive capacities, limitations, and perceptual
variations. UFuRT also emphasizes representational analysis based on
the phenomenon of representational effect [82], where different rep-
resentations of abstract structures can dramatically affect efficiencies,
task difficulties, and behavioral outcomes. The visual analytic commu-
nity has also made attempts to establish cognitive models of analysis,
though these efforts are focused primarily on justifying the appropri-
ateness of visualization design choices [38].

2.2 Task Taxonomies for Sensemaking
While human expertise and experience are what enable us to make
sense of the information around us, describing the process by which
sensemaking happens has not been easy. Early work by Pirolli and
Card [61] proposed the prototype to the canonical “sensemaking loop,”
which has become a central theme in the study of human sensemaking.
More recent taxonomies, such as work by Zhang and Soergal [84, 85]
and Kang and Stasko [41], extend this work by examining sensemak-
ing subtasks in order to form a more detailed picture of the sensemak-
ing process. These prior works establish several common subtasks,
such as task planning and analysis, gap identification, search, build-
ing structure, instantiating structure, and creating products [84].

In many cases, there is a somewhat predictable flow between
these subtasks: information gathering leads to evidence identifica-
tion, which in turn leads to confirming or refuting a hypothesis.
While this particular pattern is supported by many independent re-
searchers [41, 61, 84, 85], other sensemaking subtasks are not sup-
ported equally in the literature. As Kang and Stasko observe in [41],
gaps exist in keeping cohesive, context-preserving mental models syn-
chronized between tools. This is further complicated in the case of
collaboration between groups of analysts, which at the time of this
writing is largely ad hoc and lacks substantial computational support.

2.3 Leveraging Human Expertise in Computation
The lived experience and tacit knowledge developed over a lifetime is
often crucial to being able to solve real-world problems. At the same
time, this supplemental information about the larger domain can prove
difficult, if not impossible, to encode into a mechanical computation

system. Because of this, it is sometimes advantageous to leverage the
human’s expertise directly rather than invest significant resources in
approximating it. For example, in the field of machine learning, this
expertise is often used to generate labeled training datasets from which
an algorithm may learn an appropriate feature set. These methods have
proven highly effective in handwriting recognition [79], classifying
text documents [68], learning realistic human motion from video [49],
and other areas where predetermining a clear set of classification rules
is intractable [86]. Similarly, visual analytics systems rely on human
expertise and experience to identify patterns in data that elude purely
mechanical detection. These systems have met great success in ana-
lyzing medical imagery [9], detecting financial fraud [18], diagnosing
network faults [52], and many other applications.

Online marketplaces providing an on-demand workforce for micro-
tasks has resulted in an explosion of systems that apply distributed
human processing power to problems previously thought to be in-
tractable. Examples include image labeling [72], optical character
recognition [73], and annotating audio clips [50]. Human computation
has also been used to develop logical models of mutual exclusion [19],
as well as to identify cases where a predictive model is confident but
incorrect [5]. Perhaps most intuitively, human computation has also
shown great promise in helping refine models of human behavior [8]
and natural language [15]. As illustrated by these examples, the term
human computation spans a wide range of possible applications and
distributions of computational workload. Among these, many of the
most interesting and successful systems not only leverage the comple-
mentary computational strengths of both parties [21], but also make
efficient use of both human and machine computational resources.

2.4 Mixed Initiative Systems

Mixed initiative systems have been established as the technical im-
plementation of the balance between human and machine effort. The
defining trait of any mixed-initiative system is its ability to act on be-
half of the user while at the same time respecting user control [40]. A
natural addition to these systems is semantic interaction [29] which at-
tempts to enable co-reasoning between a user and the analytic models
of a system without requiring the user to directly control them [30].
This cohesion of user and machine initiatives strengthens the analytic
discourse which in turn produces higher quality results. One exemplar
system is the Active Data Environment [20] in which system recom-
mendations appear in response to the interactions with a visual canvas
metaphor a user has during the course of their analysis. Recommen-
dations, which can provide new data or relationships from a variety of
sources and types, appear in context of ongoing analysis and can be
encouraged by “pinning” them to parts of the existing canvas or sup-
pressed allowing a user direct control without taking them away from
their analysis.

3 WHY STUDY COMPLEXITY MEASURES FOR VA?

In other areas of the computational sciences, theoretical arguments
paved the way for the designs that made provably correct solutions
tractable. In contrast, the development of real-world implementations
has far outpaced the development of theoretical measures for stream-
ing analytics. Many of these implementations have demonstrated un-
paralleled success at previously intractable problems. However, in the
absence of a rigorous theory in which to ground the development of
new algorithms, researchers must rely on intuition and some deeply-
rooted assumptions about the differences between human and machine
computation in order to design new systems. At a low level, there
is significant interest in establishing concrete lower bounds on the
complexity of computational problems. That is, what is the minimum
amount of work that must be done in order to guarantee the solution is
correct? At a higher level, complexity theory also explores the connec-
tions between different computational problems and processes. This
kind of analysis can yield fruitful comparisons that deepen our under-
standing of the nature of a problem space through canonical or com-
plete problems, even if we can’t make absolute statements regarding
the individual problem instances.

In traditional computational complexity theory, we describe and
classify problems in terms of the resources required to solve them.
One way to measure a problem’s difficulty is with respect to time; we
may ask how long will it take to find an answer? Alternatively, one
might want to measure difficulty in terms of space; here we could ask
how much memory will I need to execute this process? These ques-
tions, which do not rely on the specific details of the implementation,
are at the heart of computer science. Theoretical arguments ground
our intuitions about the problem space, and pave the way for us to
design future systems that make these provably correct solutions a re-
ality. In addition to providing a more precise language for describ-
ing the systems we’ve built, comprehensive models can also help us
to reason more effectively about their performance during the design
process. As such, theoretical models that capture the complementary
roles played by human and machine are an important next step in ad-
vancing the science of mixed-initiative systems.

3.1 Preliminary Theoretical Models

Existing theoretical models for systems involving human computation
have focused on system-level categorization [63, 64], modeling the
social dynamics inherent in human computation systems [16, 80], or
optimizing workflows using human computation [23, 77]. In paral-
lel, the machine learning community has developed several models
for resource allocation in labeling training data [28, 74], though these
models assume a known cost function, which is not generally avail-
able in practical applications of human processing power. One major
roadblock to developing more sophisticated theoretical models is that
our ability to model how the human brain computes is hindered by a
limited understanding of the biological mechanisms driving that com-
putation. Until our understanding of the human brain is more fully de-
veloped, it seems likely that humans will remain (somewhat finicky)
black boxes in the larger system diagram. In the interim, we can begin
by characterizing and quantifying the use of human processing power
as part of an algorithmic process, and later refine these measures once
we’ve developed the tools necessary to directly measure the cost of
human computational processes.

Early work in this vein suggests that we might be able to make some
progress by modeling human contributions to an algorithm as queries
to a Human Oracle [22, 69] – an Oracle with human-level intelligence.
In this model, the Human Oracle is able to answer questions to which a
human would be able to respond, even if a machine could not. In this
work, the authors demonstrate that much of the standard theoretical
language holds true when extended to include Human Oracles, includ-
ing concepts such as algorithmic complexity, problem complexity, and
complexity classes. This indicates a complementarity between human
and machine contribution the algorithms under study, not unlike the re-
lationship alluded to in previous task taxonomies for mixed-initiative
systems [21]. Such complementarity also suggests that the complexity
of system involving both human and machine computation could be
represented as a pair 〈ΦH ,ΦM〉, where ΦH indicates the query com-
plexity (# of questions posed to the Human Oracle) as a function of
the input, and ΦM is the the standard computational complexity of the
operations performed by the machine. The minimal complexity of a
problem can then be described as the minimization of human and ma-
chine cost over all correct algorithms.

4 HUMAN AND MACHINE EFFORT IN CYBER VA SYSTEMS

To provide a foundation for later algorithmic exploration, we begin by
characterizing the utilization of human and machine effort in existing
systems documented in the cybersecurity visualization literature1. To
begin, we surveyed all 71 papers published in the proceedings of the
IEEE Conference on Visualization for Cybersecurity (VizSec) during

1While these papers represent a convenience sample of works relevant to
our future efforts in streaming visual analytics in the context of cybersecurity,
the domain-agnostic nature of the theoretical models proposed in this paper
analysis suggests that the same analysis could have been performed with similar
results had we selected a different domain. We will illustrate the application of
these same models to other domains in Section 8.

the years 2009-2015. From this, we identified a subset of 45 papers
whose primary contribution was a system. This survey identified dis-
tinct groups into which the majority of these systems could be clas-
sified, with class assignment confirmed by inter-rater agreement. We
label these classes monitor and triage, corresponding to the two high-
level patterns of utilizing human computational power that character-
ize and distinguish each class. We present the results of this char-
acterization here, and formally describe the complexity of these two
classes with respect to the Human Oracle Model described in 3.1 in
the sections to follow.

4.1 Monitor Prototypes
Systems that support monitoring activities represent a relatively sim-
plistic level of human-machine collaboration. The human has a single
task, which is to either confirm or reject machine recommendations.
These machine recommendations may take many forms, but generally
appear as highlighted, prioritized, or other visually-distinguished data
points. For instance, [54] uses a trust model to summarize signals from
sensors to indicate when grid controllers should be suspicious of in-
coming data. In [65], learned alerts are presented as either highlighted
table entries or as part of an interactive incident diagram. The analyst
might respond to these distinguished data by querying for more detail
or isolating the affected points in order to confirm the machine’s rec-
ommendation (as in [1, 36, 55, 70, 78, 87]). Some advanced systems
take this confirmation as implicit input to refine future recommenda-
tions [2, 13, 51, 59, 67], completing the loop of human-machine col-
laboration and providing explicit options for steering the visualization.

4.2 Triage Prototypes
Systems that support triage activities represent a more sophisticated
level of human-machine collaboration. Human operators in these sys-
tems are additionally responsible for taking action on valid machine
recommendations. In [37], users are given multiple pathways to block
system resources from attack and must use their judgement on which
to utilize. [4] also supports follow-up quarantine of network resources
in response to visual alerts. These follow-on steps require the hu-
man to prioritize the results of recommendations or directly refine the
recommendations themselves. This may include selecting additional
data that the machine should have included in recommendations, or
deselecting data which does not fit the analyst’s mental map of the
world. As with some monitoring systems, advanced triage systems
may leverage these refinements to modify future recommendations.
For instance, [76] asks human users to co-map data along with its ad-
vanced statistical analysis to correctly categorize rating fraud in an
iterative process. [39] employs analyst-driven clustering of network
traffic patterns to direct alerts. Triage prototypes that include the ma-
chine updating its recommendations based on user actions begin to ap-
proach the sophistication of mixed-initiative systems, especially when
the human is permitted to directly declare types of desired future rec-
ommendations that the machine has not yet generated on its own.

5 CHARACTERIZING MONITOR SYSTEMS WITH THE
HUMAN ORACLE MODEL

We now employ the Human Oracle Model to formally describe these
classes. This represents a first attempt to generalize and extend the
model to shed light on human contributions in visual analytic contexts.
For example, a first-line cyber defender might be asked to monitor
network activity for a particular attack signature [7]. This interchange,
where an external entity is contracted to perform some challenging
subroutine, is exactly the type of system that oracle machines were
built to describe [22]. In this case, the “oracle” happens to be the
human analyst, who may draw on her prior experience to recognize
the signature even if she is unable to articulate the cues she uses.

5.1 Monitoring Example: Human Only
We begin by constructing a simple example designed to emulate the
behavior of an unaided human analyst trying to perform the task of
monitoring a stream of data to determine if a signal of interest is
present (Fig. 1). This resembles many vigilance and signal detection
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2.1 Cognitive Models of User Actions
Models of human cognition have been proposed and studied for
decades and have formed the basis of what we know as human-
centered design. Early work in the development of the GOMS
model [14] and its variations have been applied to describe how peo-
ple achieve goals through their selections between alternative meth-
ods. While these advances provided a critical foundation for under-
standing human decision-making, a more complete model a human
user’s task must include not only what their goal is, but also the con-
ditions under which they are trying to meet that goal. This includes
the information available to the human, the actions they might take
to effect change, what they see and interact with, and even what they
might do wrong [42]. Critical design decisions about the trade-offs
between human and machine processing must be based on this task
analysis if an interactive system has any chance to succeed [42]. Im-
provements to conditions through such task analysis is often measured
in performance duration [26]. That is, if a person can achieve their
goals faster than they could before, improvements are considered to
have been made. While this may be a useful measure under some
conditions, we suggest that this may be an overly narrow definition
of improvement. To provide us with more nuanced understanding of
success, additional measures such as task complexity can be formally
defined such that they can be evaluated for improvement as well.

Since the development of the GOMS model, there have been many
other notable efforts to describe and predict the performance of inter-
face designs. GLEAN [45] offers a computer-based tool for gener-
ating quantitative predictions of usability and procedural aspects of
an interface design based on a supplied GOMS model. The EPIC
Architecture [43, 44, 46] models human multi-modal and multi-task
performance, and includes important factors such as sensory-motor
processes. The UFuRT framework [81] underscores user analysis as
the first phase of design, and emphasizes the importance of account-
ing for differences in cognitive capacities, limitations, and perceptual
variations. UFuRT also emphasizes representational analysis based on
the phenomenon of representational effect [82], where different rep-
resentations of abstract structures can dramatically affect efficiencies,
task difficulties, and behavioral outcomes. The visual analytic commu-
nity has also made attempts to establish cognitive models of analysis,
though these efforts are focused primarily on justifying the appropri-
ateness of visualization design choices [38].

2.2 Task Taxonomies for Sensemaking
While human expertise and experience are what enable us to make
sense of the information around us, describing the process by which
sensemaking happens has not been easy. Early work by Pirolli and
Card [61] proposed the prototype to the canonical “sensemaking loop,”
which has become a central theme in the study of human sensemaking.
More recent taxonomies, such as work by Zhang and Soergal [84, 85]
and Kang and Stasko [41], extend this work by examining sensemak-
ing subtasks in order to form a more detailed picture of the sensemak-
ing process. These prior works establish several common subtasks,
such as task planning and analysis, gap identification, search, build-
ing structure, instantiating structure, and creating products [84].

In many cases, there is a somewhat predictable flow between
these subtasks: information gathering leads to evidence identifica-
tion, which in turn leads to confirming or refuting a hypothesis.
While this particular pattern is supported by many independent re-
searchers [41, 61, 84, 85], other sensemaking subtasks are not sup-
ported equally in the literature. As Kang and Stasko observe in [41],
gaps exist in keeping cohesive, context-preserving mental models syn-
chronized between tools. This is further complicated in the case of
collaboration between groups of analysts, which at the time of this
writing is largely ad hoc and lacks substantial computational support.

2.3 Leveraging Human Expertise in Computation
The lived experience and tacit knowledge developed over a lifetime is
often crucial to being able to solve real-world problems. At the same
time, this supplemental information about the larger domain can prove
difficult, if not impossible, to encode into a mechanical computation

system. Because of this, it is sometimes advantageous to leverage the
human’s expertise directly rather than invest significant resources in
approximating it. For example, in the field of machine learning, this
expertise is often used to generate labeled training datasets from which
an algorithm may learn an appropriate feature set. These methods have
proven highly effective in handwriting recognition [79], classifying
text documents [68], learning realistic human motion from video [49],
and other areas where predetermining a clear set of classification rules
is intractable [86]. Similarly, visual analytics systems rely on human
expertise and experience to identify patterns in data that elude purely
mechanical detection. These systems have met great success in ana-
lyzing medical imagery [9], detecting financial fraud [18], diagnosing
network faults [52], and many other applications.

Online marketplaces providing an on-demand workforce for micro-
tasks has resulted in an explosion of systems that apply distributed
human processing power to problems previously thought to be in-
tractable. Examples include image labeling [72], optical character
recognition [73], and annotating audio clips [50]. Human computation
has also been used to develop logical models of mutual exclusion [19],
as well as to identify cases where a predictive model is confident but
incorrect [5]. Perhaps most intuitively, human computation has also
shown great promise in helping refine models of human behavior [8]
and natural language [15]. As illustrated by these examples, the term
human computation spans a wide range of possible applications and
distributions of computational workload. Among these, many of the
most interesting and successful systems not only leverage the comple-
mentary computational strengths of both parties [21], but also make
efficient use of both human and machine computational resources.

2.4 Mixed Initiative Systems

Mixed initiative systems have been established as the technical im-
plementation of the balance between human and machine effort. The
defining trait of any mixed-initiative system is its ability to act on be-
half of the user while at the same time respecting user control [40]. A
natural addition to these systems is semantic interaction [29] which at-
tempts to enable co-reasoning between a user and the analytic models
of a system without requiring the user to directly control them [30].
This cohesion of user and machine initiatives strengthens the analytic
discourse which in turn produces higher quality results. One exemplar
system is the Active Data Environment [20] in which system recom-
mendations appear in response to the interactions with a visual canvas
metaphor a user has during the course of their analysis. Recommen-
dations, which can provide new data or relationships from a variety of
sources and types, appear in context of ongoing analysis and can be
encouraged by “pinning” them to parts of the existing canvas or sup-
pressed allowing a user direct control without taking them away from
their analysis.

3 WHY STUDY COMPLEXITY MEASURES FOR VA?

In other areas of the computational sciences, theoretical arguments
paved the way for the designs that made provably correct solutions
tractable. In contrast, the development of real-world implementations
has far outpaced the development of theoretical measures for stream-
ing analytics. Many of these implementations have demonstrated un-
paralleled success at previously intractable problems. However, in the
absence of a rigorous theory in which to ground the development of
new algorithms, researchers must rely on intuition and some deeply-
rooted assumptions about the differences between human and machine
computation in order to design new systems. At a low level, there
is significant interest in establishing concrete lower bounds on the
complexity of computational problems. That is, what is the minimum
amount of work that must be done in order to guarantee the solution is
correct? At a higher level, complexity theory also explores the connec-
tions between different computational problems and processes. This
kind of analysis can yield fruitful comparisons that deepen our under-
standing of the nature of a problem space through canonical or com-
plete problems, even if we can’t make absolute statements regarding
the individual problem instances.

In traditional computational complexity theory, we describe and
classify problems in terms of the resources required to solve them.
One way to measure a problem’s difficulty is with respect to time; we
may ask how long will it take to find an answer? Alternatively, one
might want to measure difficulty in terms of space; here we could ask
how much memory will I need to execute this process? These ques-
tions, which do not rely on the specific details of the implementation,
are at the heart of computer science. Theoretical arguments ground
our intuitions about the problem space, and pave the way for us to
design future systems that make these provably correct solutions a re-
ality. In addition to providing a more precise language for describ-
ing the systems we’ve built, comprehensive models can also help us
to reason more effectively about their performance during the design
process. As such, theoretical models that capture the complementary
roles played by human and machine are an important next step in ad-
vancing the science of mixed-initiative systems.

3.1 Preliminary Theoretical Models

Existing theoretical models for systems involving human computation
have focused on system-level categorization [63, 64], modeling the
social dynamics inherent in human computation systems [16, 80], or
optimizing workflows using human computation [23, 77]. In paral-
lel, the machine learning community has developed several models
for resource allocation in labeling training data [28, 74], though these
models assume a known cost function, which is not generally avail-
able in practical applications of human processing power. One major
roadblock to developing more sophisticated theoretical models is that
our ability to model how the human brain computes is hindered by a
limited understanding of the biological mechanisms driving that com-
putation. Until our understanding of the human brain is more fully de-
veloped, it seems likely that humans will remain (somewhat finicky)
black boxes in the larger system diagram. In the interim, we can begin
by characterizing and quantifying the use of human processing power
as part of an algorithmic process, and later refine these measures once
we’ve developed the tools necessary to directly measure the cost of
human computational processes.

Early work in this vein suggests that we might be able to make some
progress by modeling human contributions to an algorithm as queries
to a Human Oracle [22, 69] – an Oracle with human-level intelligence.
In this model, the Human Oracle is able to answer questions to which a
human would be able to respond, even if a machine could not. In this
work, the authors demonstrate that much of the standard theoretical
language holds true when extended to include Human Oracles, includ-
ing concepts such as algorithmic complexity, problem complexity, and
complexity classes. This indicates a complementarity between human
and machine contribution the algorithms under study, not unlike the re-
lationship alluded to in previous task taxonomies for mixed-initiative
systems [21]. Such complementarity also suggests that the complexity
of system involving both human and machine computation could be
represented as a pair 〈ΦH ,ΦM〉, where ΦH indicates the query com-
plexity (# of questions posed to the Human Oracle) as a function of
the input, and ΦM is the the standard computational complexity of the
operations performed by the machine. The minimal complexity of a
problem can then be described as the minimization of human and ma-
chine cost over all correct algorithms.

4 HUMAN AND MACHINE EFFORT IN CYBER VA SYSTEMS

To provide a foundation for later algorithmic exploration, we begin by
characterizing the utilization of human and machine effort in existing
systems documented in the cybersecurity visualization literature1. To
begin, we surveyed all 71 papers published in the proceedings of the
IEEE Conference on Visualization for Cybersecurity (VizSec) during

1While these papers represent a convenience sample of works relevant to
our future efforts in streaming visual analytics in the context of cybersecurity,
the domain-agnostic nature of the theoretical models proposed in this paper
analysis suggests that the same analysis could have been performed with similar
results had we selected a different domain. We will illustrate the application of
these same models to other domains in Section 8.

the years 2009-2015. From this, we identified a subset of 45 papers
whose primary contribution was a system. This survey identified dis-
tinct groups into which the majority of these systems could be clas-
sified, with class assignment confirmed by inter-rater agreement. We
label these classes monitor and triage, corresponding to the two high-
level patterns of utilizing human computational power that character-
ize and distinguish each class. We present the results of this char-
acterization here, and formally describe the complexity of these two
classes with respect to the Human Oracle Model described in 3.1 in
the sections to follow.

4.1 Monitor Prototypes
Systems that support monitoring activities represent a relatively sim-
plistic level of human-machine collaboration. The human has a single
task, which is to either confirm or reject machine recommendations.
These machine recommendations may take many forms, but generally
appear as highlighted, prioritized, or other visually-distinguished data
points. For instance, [54] uses a trust model to summarize signals from
sensors to indicate when grid controllers should be suspicious of in-
coming data. In [65], learned alerts are presented as either highlighted
table entries or as part of an interactive incident diagram. The analyst
might respond to these distinguished data by querying for more detail
or isolating the affected points in order to confirm the machine’s rec-
ommendation (as in [1, 36, 55, 70, 78, 87]). Some advanced systems
take this confirmation as implicit input to refine future recommenda-
tions [2, 13, 51, 59, 67], completing the loop of human-machine col-
laboration and providing explicit options for steering the visualization.

4.2 Triage Prototypes
Systems that support triage activities represent a more sophisticated
level of human-machine collaboration. Human operators in these sys-
tems are additionally responsible for taking action on valid machine
recommendations. In [37], users are given multiple pathways to block
system resources from attack and must use their judgement on which
to utilize. [4] also supports follow-up quarantine of network resources
in response to visual alerts. These follow-on steps require the hu-
man to prioritize the results of recommendations or directly refine the
recommendations themselves. This may include selecting additional
data that the machine should have included in recommendations, or
deselecting data which does not fit the analyst’s mental map of the
world. As with some monitoring systems, advanced triage systems
may leverage these refinements to modify future recommendations.
For instance, [76] asks human users to co-map data along with its ad-
vanced statistical analysis to correctly categorize rating fraud in an
iterative process. [39] employs analyst-driven clustering of network
traffic patterns to direct alerts. Triage prototypes that include the ma-
chine updating its recommendations based on user actions begin to ap-
proach the sophistication of mixed-initiative systems, especially when
the human is permitted to directly declare types of desired future rec-
ommendations that the machine has not yet generated on its own.

5 CHARACTERIZING MONITOR SYSTEMS WITH THE
HUMAN ORACLE MODEL

We now employ the Human Oracle Model to formally describe these
classes. This represents a first attempt to generalize and extend the
model to shed light on human contributions in visual analytic contexts.
For example, a first-line cyber defender might be asked to monitor
network activity for a particular attack signature [7]. This interchange,
where an external entity is contracted to perform some challenging
subroutine, is exactly the type of system that oracle machines were
built to describe [22]. In this case, the “oracle” happens to be the
human analyst, who may draw on her prior experience to recognize
the signature even if she is unable to articulate the cues she uses.

5.1 Monitoring Example: Human Only
We begin by constructing a simple example designed to emulate the
behavior of an unaided human analyst trying to perform the task of
monitoring a stream of data to determine if a signal of interest is
present (Fig. 1). This resembles many vigilance and signal detection
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Fig. 1. Illustration of a simple stream monitoring system using a Human
Oracle. In this system, the machine performs no function other than
sampling the stream (left), passing each sample directly through to the
Human Oracle (right) which determines whether or not there is a match.

tasks that have been present in real analytic workflows for decades (for
instance, see [71]). Particularly within the realm of vigilance, it is well
understood that degradation in performance happens over time [75].
Thus, while this example might appear overly simple, we suggest that
the characterization of unaided monitoring tasks is an important base-
line to which we will later compare machine-supported analysis.

In this system, streaming data is sampled by the machine as it passes
through some data capture mechanism, and each sample is forwarded
directly to the Human Oracle for processing. The Human Oracle then
performs a single binary operation, determining whether or not the
signal is a match. Let us assume for the time being that each of these
operations has some fixed cost CMATCH . We then imagine that we
start this “system” up, use it to process k consecutive samples, and
then power it back down. In pseudocode, we could write:

Algorithm 1: Human-Only Approach

Let Hmatch be a Human Oracle that performs MATCH operations;
foreach sample k do

return Hmatch(k);
end

Using the methodology described in Section 3.1, we can describe the
work performed by this algorithm in processing those k samples as
〈ΦH ,ΦM〉= 〈k∗CMATCH ,0〉: the machine passes each sample directly
through without performing any computation on it, and the human
processes each and every sample at a cost of CMATCH .

5.2 Monitoring Example: Human + Machine
Such a system clearly violates the implicit directive that the use of
human computation should be judicious: after all, human effort is ex-
pensive (that is, CMATCH is very large with respect to the per-operation
machine cost). Additionally, we know that performance suffers over
extended periods of boredom induced by repetitive work [60] and
eventually there is a point at which human “processors” will simply
refuse to perform any more computation. Because of this, we may
wish to model the per-query cost as a function that varies over time;
we’ll discuss this further in Section 9.1. Finally, we have yet to men-
tion the relationship between the rate at which samples are coming in
and the rate at which the Human Oracle can process them; if the Hu-
man Oracle cannot complete the processing of one sample before the
next one arrives, this process will quickly grind to a halt.

Suffice to say that there are many scenarios where requiring a hu-
man to conduct an exhaustive search is less than optimal. In such
cases, we could imagine a second simple system (Fig. 2) in which the
machine performs an initial filtering step on each sample at some cost

CFILT ER << CMATCH . During this filtering step, the machine iden-
tifies and screens out any “unambiguous” samples, such as those in
which the signal in question is clearly absent. The (now reduced num-
ber of) remaining samples are then passed on to the Human Oracle for
processing, each at a cost of CMATCH . The pseudocode for running
this machine on k samples might look something like this:

Algorithm 2: Human+Machine Approach

Let Hmatch be a Human Oracle that performs MATCH operations;
Let Mscreen be a machine that performs SCREEN operations;
foreach sample k do

if Mscreen(k) == false then
return Hmatch(k);

end

Using the same methodology as before, we can describe the work
performed in processing those k samples as 〈ΦH ,ΦM〉 = 〈k(1 −
E[screened]) ∗CMATCH ,k ∗CFILT ER〉: the machine evaluates each
sample at a cost of CFILT ER, screening them out at some expected
rate E[screened], and the human processes only those that remain.

5.3 Modeling Examples: Comparing Performance

Now that we’ve characterized these approaches using implementation-
agnostic language, comparing between them is straightforward:

ΦH ΦM

Human Only k ∗CMATCH 0
Human+Machine k(1−E[screen])∗CMATCH k ∗CFILT ER

Table 1. Algorithmic comparison of our example Human-Only and Hu-
man+Machine approaches to the stream monitoring problem.

Using this framework, we see that our intuition about the role of rec-
ommendation systems is nicely articulated: the Human+Machine sys-
tem trades an increase in (inexpensive) machine effort for a corre-
sponding reduction in (expensive) human effort. Moreover, this re-
duction is inversely proportional to the expected rate at which recom-
mendations are made.

Fig. 2. Illustration of a second stream monitoring system using a Human
Oracle. In this system, the machine samples the stream (left), performs
an initial filtering step to screen out unambiguous samples (center), and
passes each remaining sample through to the Human Oracle (right).
Such a system is most effective in scenarios when the number of sam-
ples that could be screened out is relatively large.

It is important to be clear that this comparison is facilitated by a
rather large assumption: we have assumed that CMATCH (the cost of
each HMATCH operation) is constant. That is, regardless of the spe-
cific instance presented to the Human Oracle, the cost to determine
whether or not a match is present is the same. Additionally, this pre-
sumes that this cost is also fixed with respect to the number of queries
passed to the Human Oracle. While practical experience reminds us
that such assumptions are overly naive, they enable us to more clearly
illustrate the underlying differences in these two approaches at the al-
gorithmic level. We suggest that drawing parallels at the algorithmic
level rather than at the implementation level can enable us to compare
systems more effectively than using simple A-B testing. As with other
branches of computational science, identifying areas where existing
algorithms are redundant or inefficient will enable us to design more
efficient algorithms in the future. In addition, reporting bounds on
the complexity of the algorithms on which our systems are built along
with the observed performance of the system would improve study re-
producibility, as well as help isolate the effects of interface design and
other implementation details. In Section 9.1, we go into further detail
on the implications of these assumptions, and suggest directions for
their relaxation in pursuit of more accurate models.

6 HUMAN ORACLES WITH MULTIPLE OPERATION TYPES

The simple examples described in the previous sections are useful for
illustrating how we might model the use of human processing power
analytical systems. However, in most real-world situations the hu-
man operator will be required to perform a variety of operations rather
than just one. To capture this behavior, we extend our notion of the
Human Oracle to accommodate several (though finitely many) unique
operation types, each with its own corresponding cost. Equivalently,
we could define several independent Human Oracles, each perform-
ing a single operation type at a fixed cost. These independent oracles
could be thought of as representing the various analytical subtasks a
human engages in during the sensemaking process. As highlighted in
Section 2.2, sensemaking subtasks have been characterized and doc-
umented by many independent research efforts. While demonstrating
the completeness of these taxonomies is still an area for ongoing re-
search, we do not attempt to replicate these efforts here. Instead, we
focus on illustrating how these subtasks are composed to form larger
sensemaking strategies, and how to measure the utilization of various
subtasks during the execution of an analytical process.

Fig. 3. Illustration of a stream triaging system using a Human Oracle.
In this system, the machine samples a collection of streams (left), per-
forms an initial filtering step to screen out unambiguous samples (cen-
ter), and alerts the Human Oracle of any sample that was not screened
out (right). The Human Oracle then confirms whether or not the alert
is valid (1), and if so, then evaluates each stream individually to identify
the source(s) of the anomalous behavior (2).

6.1 Triage Example
Consider for example an analyst tasked with monitoring and triaging
alerts across multiple streams of data that are continuously and simul-
taneously updating. Due to overwhelming volume, it is not possible to
exhaustively monitor all streams at all times. As such, our analyst must
leverage computational support to direct her attention when something
seems “out of place”. However, as with the previous examples, it may
be the case that the analyst is unable to articulate precisely what con-
stitutes an anomaly (though we presume she will be able to recognize
it when it is presented to her). One the analyst receives an alert she
must then apply her domain expertise to determine (1) whether the
alert is legitimate or a false alarm, and if it is legitimate (2) scan the
data streams to identify the likely cause of the alert and triage the issue
to the appropriate mitigation team (see Fig. 3). In pseudocode:

Algorithm 3: Human+Machine Triage

Let HFA be a Human Oracle that identifies FALSE ALARMS;
Let HT RIAGE be a Human Oracle that performs TRIAGE;
Let MALERT be a machine that generates ALERTS;
foreach sample k do

if MALERT (k) == true then
if HFA(k) == false then

foreach stream s in k do
HT RIAGE(s)

end
end

We again assume that there is some cost CFA associated with asking
the Human Oracle to evaluate an alert. For any alert that is found to be
legitimate, the Human Oracle must then triage each of the data streams
at some cost CT for each of the s streams. To determine the complexity
of this process, we must also consider the machine’s expected alert rate
E[ALERT ], its expected false alarm rate E[FA], and the cost CALERT
incurred by the machine on each sample to determine whether or not
to alert the analyst. Using this information, we can describe the work
performed by this algorithm in processing k samples as:

〈ΦH ,ΦM〉= 〈k(E[ALERT ]∗(CFA+(1−E[FA])∗CT ∗s)),k∗CALERT 〉

This captures some of our intuition about the relationship between an
analyst’s workload and the reliability of an alert system: ΦH is directly
tied to the rate at which the machine generates alerts, and how often
those alerts turn out to be false alarms. The relative weighting of the
costs CFA and CT incurred by the Human Oracle can be used to help
determine the tolerance to false alarms: if both CFA and E[FA] are
relatively high, the system is incurring a large cost without reaping a
corresponding benefit.

6.2 Sensemaking Example
We have previously described sensemaking taxonomies as provid-
ing insight into how humans make use of the information around
them and the mixed-initiative systems which support them in this pro-
cess. Next we examine searching through the lens of the Human
Oracle Model. Of the six general sensemaking subtasks identified
by [84], searching represents the best starting point as it is found
as a subtask in some form across many taxonomies of sensemak-
ing [25, 41, 61, 62, 66, 84, 85] and may be triggered in any number of
ways. Successful searching is required before any gaps can be filled
and search results will influence mental maps, reports, and other out-
comes. It represents a leverage point [61] where human knowledge
begins to interact with machine. It also provides an illustrative ex-
ample for how mixed-initiative systems might support humans in the
sensemaking process.

Though the human-only approach described in Section 5.1 was de-
signed for a monitoring example, it also accurately reflects the pro-
cess of a human searching for relevant documents in a collection of
k documents. Human-only approaches to searching are costly, and
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Fig. 1. Illustration of a simple stream monitoring system using a Human
Oracle. In this system, the machine performs no function other than
sampling the stream (left), passing each sample directly through to the
Human Oracle (right) which determines whether or not there is a match.

tasks that have been present in real analytic workflows for decades (for
instance, see [71]). Particularly within the realm of vigilance, it is well
understood that degradation in performance happens over time [75].
Thus, while this example might appear overly simple, we suggest that
the characterization of unaided monitoring tasks is an important base-
line to which we will later compare machine-supported analysis.

In this system, streaming data is sampled by the machine as it passes
through some data capture mechanism, and each sample is forwarded
directly to the Human Oracle for processing. The Human Oracle then
performs a single binary operation, determining whether or not the
signal is a match. Let us assume for the time being that each of these
operations has some fixed cost CMATCH . We then imagine that we
start this “system” up, use it to process k consecutive samples, and
then power it back down. In pseudocode, we could write:

Algorithm 1: Human-Only Approach

Let Hmatch be a Human Oracle that performs MATCH operations;
foreach sample k do

return Hmatch(k);
end

Using the methodology described in Section 3.1, we can describe the
work performed by this algorithm in processing those k samples as
〈ΦH ,ΦM〉= 〈k∗CMATCH ,0〉: the machine passes each sample directly
through without performing any computation on it, and the human
processes each and every sample at a cost of CMATCH .

5.2 Monitoring Example: Human + Machine
Such a system clearly violates the implicit directive that the use of
human computation should be judicious: after all, human effort is ex-
pensive (that is, CMATCH is very large with respect to the per-operation
machine cost). Additionally, we know that performance suffers over
extended periods of boredom induced by repetitive work [60] and
eventually there is a point at which human “processors” will simply
refuse to perform any more computation. Because of this, we may
wish to model the per-query cost as a function that varies over time;
we’ll discuss this further in Section 9.1. Finally, we have yet to men-
tion the relationship between the rate at which samples are coming in
and the rate at which the Human Oracle can process them; if the Hu-
man Oracle cannot complete the processing of one sample before the
next one arrives, this process will quickly grind to a halt.

Suffice to say that there are many scenarios where requiring a hu-
man to conduct an exhaustive search is less than optimal. In such
cases, we could imagine a second simple system (Fig. 2) in which the
machine performs an initial filtering step on each sample at some cost

CFILT ER << CMATCH . During this filtering step, the machine iden-
tifies and screens out any “unambiguous” samples, such as those in
which the signal in question is clearly absent. The (now reduced num-
ber of) remaining samples are then passed on to the Human Oracle for
processing, each at a cost of CMATCH . The pseudocode for running
this machine on k samples might look something like this:

Algorithm 2: Human+Machine Approach

Let Hmatch be a Human Oracle that performs MATCH operations;
Let Mscreen be a machine that performs SCREEN operations;
foreach sample k do

if Mscreen(k) == false then
return Hmatch(k);

end

Using the same methodology as before, we can describe the work
performed in processing those k samples as 〈ΦH ,ΦM〉 = 〈k(1 −
E[screened]) ∗CMATCH ,k ∗CFILT ER〉: the machine evaluates each
sample at a cost of CFILT ER, screening them out at some expected
rate E[screened], and the human processes only those that remain.

5.3 Modeling Examples: Comparing Performance

Now that we’ve characterized these approaches using implementation-
agnostic language, comparing between them is straightforward:

ΦH ΦM

Human Only k ∗CMATCH 0
Human+Machine k(1−E[screen])∗CMATCH k ∗CFILT ER

Table 1. Algorithmic comparison of our example Human-Only and Hu-
man+Machine approaches to the stream monitoring problem.

Using this framework, we see that our intuition about the role of rec-
ommendation systems is nicely articulated: the Human+Machine sys-
tem trades an increase in (inexpensive) machine effort for a corre-
sponding reduction in (expensive) human effort. Moreover, this re-
duction is inversely proportional to the expected rate at which recom-
mendations are made.

Fig. 2. Illustration of a second stream monitoring system using a Human
Oracle. In this system, the machine samples the stream (left), performs
an initial filtering step to screen out unambiguous samples (center), and
passes each remaining sample through to the Human Oracle (right).
Such a system is most effective in scenarios when the number of sam-
ples that could be screened out is relatively large.

It is important to be clear that this comparison is facilitated by a
rather large assumption: we have assumed that CMATCH (the cost of
each HMATCH operation) is constant. That is, regardless of the spe-
cific instance presented to the Human Oracle, the cost to determine
whether or not a match is present is the same. Additionally, this pre-
sumes that this cost is also fixed with respect to the number of queries
passed to the Human Oracle. While practical experience reminds us
that such assumptions are overly naive, they enable us to more clearly
illustrate the underlying differences in these two approaches at the al-
gorithmic level. We suggest that drawing parallels at the algorithmic
level rather than at the implementation level can enable us to compare
systems more effectively than using simple A-B testing. As with other
branches of computational science, identifying areas where existing
algorithms are redundant or inefficient will enable us to design more
efficient algorithms in the future. In addition, reporting bounds on
the complexity of the algorithms on which our systems are built along
with the observed performance of the system would improve study re-
producibility, as well as help isolate the effects of interface design and
other implementation details. In Section 9.1, we go into further detail
on the implications of these assumptions, and suggest directions for
their relaxation in pursuit of more accurate models.

6 HUMAN ORACLES WITH MULTIPLE OPERATION TYPES

The simple examples described in the previous sections are useful for
illustrating how we might model the use of human processing power
analytical systems. However, in most real-world situations the hu-
man operator will be required to perform a variety of operations rather
than just one. To capture this behavior, we extend our notion of the
Human Oracle to accommodate several (though finitely many) unique
operation types, each with its own corresponding cost. Equivalently,
we could define several independent Human Oracles, each perform-
ing a single operation type at a fixed cost. These independent oracles
could be thought of as representing the various analytical subtasks a
human engages in during the sensemaking process. As highlighted in
Section 2.2, sensemaking subtasks have been characterized and doc-
umented by many independent research efforts. While demonstrating
the completeness of these taxonomies is still an area for ongoing re-
search, we do not attempt to replicate these efforts here. Instead, we
focus on illustrating how these subtasks are composed to form larger
sensemaking strategies, and how to measure the utilization of various
subtasks during the execution of an analytical process.

Fig. 3. Illustration of a stream triaging system using a Human Oracle.
In this system, the machine samples a collection of streams (left), per-
forms an initial filtering step to screen out unambiguous samples (cen-
ter), and alerts the Human Oracle of any sample that was not screened
out (right). The Human Oracle then confirms whether or not the alert
is valid (1), and if so, then evaluates each stream individually to identify
the source(s) of the anomalous behavior (2).

6.1 Triage Example
Consider for example an analyst tasked with monitoring and triaging
alerts across multiple streams of data that are continuously and simul-
taneously updating. Due to overwhelming volume, it is not possible to
exhaustively monitor all streams at all times. As such, our analyst must
leverage computational support to direct her attention when something
seems “out of place”. However, as with the previous examples, it may
be the case that the analyst is unable to articulate precisely what con-
stitutes an anomaly (though we presume she will be able to recognize
it when it is presented to her). One the analyst receives an alert she
must then apply her domain expertise to determine (1) whether the
alert is legitimate or a false alarm, and if it is legitimate (2) scan the
data streams to identify the likely cause of the alert and triage the issue
to the appropriate mitigation team (see Fig. 3). In pseudocode:

Algorithm 3: Human+Machine Triage

Let HFA be a Human Oracle that identifies FALSE ALARMS;
Let HT RIAGE be a Human Oracle that performs TRIAGE;
Let MALERT be a machine that generates ALERTS;
foreach sample k do

if MALERT (k) == true then
if HFA(k) == false then

foreach stream s in k do
HT RIAGE(s)

end
end

We again assume that there is some cost CFA associated with asking
the Human Oracle to evaluate an alert. For any alert that is found to be
legitimate, the Human Oracle must then triage each of the data streams
at some cost CT for each of the s streams. To determine the complexity
of this process, we must also consider the machine’s expected alert rate
E[ALERT ], its expected false alarm rate E[FA], and the cost CALERT
incurred by the machine on each sample to determine whether or not
to alert the analyst. Using this information, we can describe the work
performed by this algorithm in processing k samples as:

〈ΦH ,ΦM〉= 〈k(E[ALERT ]∗(CFA+(1−E[FA])∗CT ∗s)),k∗CALERT 〉

This captures some of our intuition about the relationship between an
analyst’s workload and the reliability of an alert system: ΦH is directly
tied to the rate at which the machine generates alerts, and how often
those alerts turn out to be false alarms. The relative weighting of the
costs CFA and CT incurred by the Human Oracle can be used to help
determine the tolerance to false alarms: if both CFA and E[FA] are
relatively high, the system is incurring a large cost without reaping a
corresponding benefit.

6.2 Sensemaking Example
We have previously described sensemaking taxonomies as provid-
ing insight into how humans make use of the information around
them and the mixed-initiative systems which support them in this pro-
cess. Next we examine searching through the lens of the Human
Oracle Model. Of the six general sensemaking subtasks identified
by [84], searching represents the best starting point as it is found
as a subtask in some form across many taxonomies of sensemak-
ing [25, 41, 61, 62, 66, 84, 85] and may be triggered in any number of
ways. Successful searching is required before any gaps can be filled
and search results will influence mental maps, reports, and other out-
comes. It represents a leverage point [61] where human knowledge
begins to interact with machine. It also provides an illustrative ex-
ample for how mixed-initiative systems might support humans in the
sensemaking process.

Though the human-only approach described in Section 5.1 was de-
signed for a monitoring example, it also accurately reflects the pro-
cess of a human searching for relevant documents in a collection of
k documents. Human-only approaches to searching are costly, and
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an exhaustive search for relevant information will require the same
〈ΦH ,ΦM〉= 〈k ∗CH ,0〉 work as before with CH representing the cost
of a human to determine if a single given document is relevant. In
practice, human sensemakers do not have the luxury of endless search
time and so rarely exhaustively search. Expertise and experience teach
sensemakers when they have obtained a sufficient q documents to sat-
isfy their current need. This threshold must be determined per search
and may be dependent on the quality of sources. Thus, we require a
human oracle that can determine when sufficient evidence has been
gathered, and so adapt our human-only search algorithm as follows:

Algorithm 4: Human-Only Search
Let HREL be a Human Oracle that performs RELEVANCE

testing;
Let HSAT be a Human Oracle that performs SATISFY operations;
foreach sample k do

if HREL(k) == true then
Select sample k into q;

if HSAT (q) == true then
Exit sample k loop;

end

The overall work of the human in this case depends then on the cost of
evaluate the relevance of a single document, CREL, and the additional
cost to determine if the selected documents satisfy search goals, CSAT .
We also need to consider the order in which documents are presented
to the human. In the best case, the first q documents would be satisfac-
tory and the search could terminate before all k documents are seen.
In the worst case, the relevant documents will be the last q seen and
the search will be exhaustive. Randomly ordered searches will then be
dependent on P, the proportion of useful documents in k. Thus, the
total work performed by the human in this unsupported search will be

〈ΦH ,ΦM〉= 〈(CSAT ÷P)∗CREL,0〉

The human-only search provides insight into precisely why sup-
ported searching in mixed-initiative systems is so useful. System-
generated recommendations can make it more likely that relevant doc-
uments will be found early in a search. Moreover, as the available k
grows beyond what can possibly be exhaustively searched, system rec-
ommendations may be the only way to reach a satisfied search. This
is easily the case in streaming environments where analysts look for
sufficient signals to support their hypothesis regarding the occurrence
of particular activities. Utilizing machine effort as well makes it more
likely that the search will be satisfied without requiring the human to
determine the relevance of all k documents:

Algorithm 5: Human+Machine Recommended Search
Let HREL be a Human Oracle that performs RELEVANCE

testing;
Let HSAT be a Human Oracle that performs SATISFY operations;
Let MREC be a machine that makes RECOMMENDATIONS;
foreach sample k do

if MREC(k) == true then
if HREL(k) == true then

Select sample k into q;
if HSAT (q) == true then

Exit sample k loop;
end

We must now account for the expected number of recommendations as
the limiting factor in the work performed by the human. We still have
some P proportion of truly relevant documents in k, but this proportion
now affects the machine instead of the human. The better the recom-
mendations, the more it will appear to a human that all documents are

useful. We can replace this now with the expected number of recom-
mendations generated by a system (no system has been declared per-
fect yet, we can still expect some spurious recommendations). There
will now be a cost of CREC to the machine to recommend documents.
The total work of the mixed-initiative search then becomes

〈ΦH ,ΦM〉= 〈E[REC]∗ (CREL +CSAT ),k ∗CREC〉

7 DESIGN DEMONSTRATION: CYBERSECURITY SCENARIO

Next we examine a hypothetical sensemaking environment designed
to leverage the insights we’ve gained by examining sensemaking tasks
in streaming environments. Our hypothetical scenario is sensitive to
the needs of cybersecurity analysts, who must assemble clues from a
multitude of sources on-the-fly. This has traditionally been accom-
plished through the use of tools such as Splunk2 which supports com-
plex querying for patterns. Other technologies such as OpenStack3

are used to set up and manage networks and clouds while providing
a wealth of telemetry information including firewall creation and up-
dates, vpn connections, load balancing metrics, etc. The number of
data streams k that a cyber analyst must monitor in real time quickly
grows to the hundreds and thousands. For our current scenario, we
will limit the focus of our cyber analyst to spotting suspicious fire-
wall activity on their network, particularly from users with escalated
privileges.

7.1 User Tasks
The analyst in this scenario is engaged in several goal-oriented tasks at
once. They are actively monitoring for indications of threats that they
have seen before (and therefore know how to respond). They are also
concerned about the appearance of new threats they have not encoun-
tered before. When such a threat is encountered, they must then deter-
mine how to isolate the threat, remediate the affected situations, and
then prevent such a threat from threatening their system again. In our
focused case of suspicious firewall activity, our cyber analyst is look-
ing for indications that a set of valid network credentials is modifying
the network’s firewalls in ways that indicate they’ve somehow esca-
lated their privileges beyond what they should normally be allowed to
do. For our scenario, the cyber analyst is monitoring firewall changes
and selecting suspicious activity for further investigation.

7.2 Visualizations and Interactions
As noted in [7], visualizations have been a difficult problem for cy-
bersecurity research to effectively solve. To crudely summarize, vi-
sualizations appear to impose an arbitrary “middle layer” between an
analyst’s ability to monitor a system and navigate to specific data that
need investigating. Analysts prefer to work directly with their data
to be certain of their conclusions. Unfortunately, humans are better
suited to pick out graphical anomalies compared with textual ones.
Anscombe’s quartet [3] is a simple, well known demonstration of the
power of visualization over raw data.

In our scenario of firewalls and escalated privileges, our interface
will defer to analyst preference for tabular, raw data and the ma-
chine/interface will be challenged with presenting these rows of data
in such a way that the analysts using them don’t need to search. We
will attempt to design an interface which balances tasks similar to
the searching with recommendations of Section 5.2. The system will
present firewall meters in a particular order determined by the ana-
lyst. Selection of a row will expand the row to include more details
about the network user responsible for the entry. The system will also
then visually flag other rows the same user is responsible for as well
as similar rows regardless of the network user responsible. The ana-
lyst driving the investigation should be able to select rows or network
users in this manner an mark them as important enough for continued
observation. In turn, the system would give such marked or followed
meters and network users priority in the interface and reduce the time
the analyst spends locating them among other entries. Additional em-
bellishments to the interface might include system generated metadeta

2http://www.splunk.com
3http://www.openstack.org/

such as trends in the amount of activity associated with a specific net-
work user or network traffic affected by a given firewall. These addi-
tions would help an analyst determine whether or not a network user
or firewall merits continued investigation.

7.3 Scenario Complexity
Our scenario closely parallels a triage-type system. The analyst is re-
sponsible for verifying that the machine-recommended data is impor-
tant, and then prioritizing which data they wish to handle first. Data in
which the human has indicated interest is kept elevated by the machine
in order to reduce the amount of effort the human is required to spend
following it for updates. Additionally, whenever the human interacts
with a given piece of data, similar data is flagged as relevant in the
event that the human decides to expand or alter her investigation. This
gives us a mixed-initiative system where a cyber analyst drives the
investigation of firewall rules and activity by network users and is sup-
ported by machine abilities to process large volumes of data for simi-
larities and remember previously important actions. In the language of
the Human Oracle Model, this system is following the same approach
that was outlined in the Human+Machine Triage algorithm of 6.1.
as before, we have a machine that generates alerts/recommendations
(MALERT ). The analyst determines if the alert is legitimate (HFA), and
then marks important alerts for action and follow-up (HT RIAGE ). Thus,
we would expect the overall performance to again be:

〈ΦH ,ΦM〉= 〈k(E[ALERT ]∗(CFA+(1−E[FA])∗CT ∗s)),k∗CALERT 〉

with limiting factors being the rate at which alerts are generated
E[ALERT ], as well as the false alarm rate E[FA].

8 ADDITIONAL DOMAIN APPLICATIONS

In this paper, we demonstrated how the Human Oracle Model can
aid in the design and evaluation of tools for streaming data analy-
sis through example problems in the domain of cybersecurity. While
the rich canon of human-machine interactive systems in this domain
makes this a useful exemplar, we suggest that the benefits afforded
by this model for improving our understanding of streaming analysis
reach far beyond cybersecurity. For example, the theoretical models
of streaming analysis tasks in cybersecurity that were illustrated in
this paper could also apply directly to other important application ar-
eas. Indeed, one of the primary strengths of these models is that they
provide a level of abstraction that is useful not only in characteriz-
ing common approaches within a domain, but which may facilitate the
transfer of ideas across domains.

8.1 Healthcare
Interactive health information technology systems are providing crit-
ical support to medical professionals, but as with the examples pre-
sented in this work, providing appropriate computational support for
triage and monitoring is a nontrivial task. At present, workflow models
and model-based design methods are being used to provide designers
and developers with fundamental system requirements [6]. Along with
model checking [12], our work compliments these efforts by provid-
ing a formal description of human and machine balance so that areas
of inefficiency or inaccuracy can be targeted and improved. Frame-
works such as TURF [83] consider measure important factors such
as learnability, efficiency, and error prevention. Our work can add to
this discussion by illuminating how the balance between human and
machine may influence efficiency and error rate, specifically when it
comes to describing the human effort involved.

8.2 Finance
Each day, billions of financial transactions impact the lives of people
all over the world. Some (hopefully small) portion of these transac-
tions are fraudulent, or in some way connected to criminal activity.
Detecting and remediating such financial crime is a task that has his-
torically fallen on the shoulders of human analysts, who could eas-
ily become overwhelmed by the sheer volume of transactions. How-
ever, because the individuals and organizations perpetrating financial

fraud are constantly adapting their strategies to elude detection, the
detection of suspicious transactions cannot be fully automated. Sys-
tems such as WireVis [17, 18] have been presented to support hybrid
human-machine analysis in this domain. Coordinated views including
time-series, networks of entities or keywords, and heatmaps have all
been implemented and prototypes evaluated in terms of the hardware
requirements to support the analysis of at-scale data [18]. More recent
contributions have applied visual analytics techniques to financial sta-
bility monitoring [35]. As with many other domains, one of the largest
barriers to the adoption of these systems has been in justifying the cost
(both in terms of time and potential downtime of detection) of retrain-
ing analysts. The Human Oracle Model could support work such as
these by describing the complexity of user tasks, and for comparing
the potential benefits of these novel systems and workflows over exist-
ing best practices.

8.3 Power Grid Management
Large infrastructure systems such as the power grid produce an enor-
mous volume of data, and real-time situational awareness is critical for
maintaining safe and efficient operations [27]. Intensive observations
and task analyses have produced an understanding of the complex and
collaborative behavior of grid operators [56]. The work we present
here complements this analysis by providing insight into the complex-
ity of observed tasks, and could help to prioritize how improvements
based on such analysis are made. In addition to these analyses, highly-
specialized decision support systems such as M-DART [53] have been
introduced to support grid operators in managing high-volume data
from multiple streams, assist in anomaly detection, and even facilitate
causal inference. The importance of small improvements in reaction
time cannot be understated: the amount of time elapsed in responding
to power grid events can mean the difference between the nuisance of a
brief flicker of the lights and the potentially life-threatening effects of
a full scale blackout. Work such as [47] describes the cascading effects
of losing multiple substations, and provides evidence that preventing
substation loss early has a profound impact on the resilience of the
grid. The work presented here contributes to this discussion by help-
ing us to understand where obstacles in the human operator’s task load
could exacerbate these conditions, and where appropriate automation
would improve grid reliability.

9 DISCUSSION AND FUTURE EXTENSIONS

The model presented in this paper provides a critical first step in quan-
tifying the use of humans as computational resources, and helps us to
better understand the intricate relationships among different problems
and problem families when viewed through this simple lens. That said,
this model only just scratches the surface of this potentially rich area
for future research, and conveniently ignores some very real factors
present in any system involving the variability of computing using hu-
mans as part of the computational engine. In the following sections,
we will discuss some of the limitations of this model, as well as moti-
vate our continued research in this area.

9.1 Resource Constraints and Imperfect Oracles
Under the straightforward Human Oracle Model, there is an implicit
assumption a Human Oracle is always be able to provide the correct
answer at a fixed cost. Intuition and experience indicates that in reality,
humans don’t work this way: they eventually get tired or bored, and as
a consequence their speed and accuracy suffer. In addition to variation
over time, individual differences in ability and cost are absent, despite
their demonstrated impact on visualization performance [57]. In the
real world, not all humans are equal in their capacity to answer the
questions we ask. Some are more skilled or have better training, and
their expertise comes (we presume) at a higher cost.

Similar issues have arisen in the area of active learning, which has
historically assumed a single tireless, flawless, benevolent oracle was
always available to provide labels for its training data. Proactive learn-
ing relaxes these assumptions, adopting a decision-theoretic approach
to match one of a collection of (possibly imperfect) oracles to each
instance [28]. More recent work in the area of multiple expert active
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an exhaustive search for relevant information will require the same
〈ΦH ,ΦM〉= 〈k ∗CH ,0〉 work as before with CH representing the cost
of a human to determine if a single given document is relevant. In
practice, human sensemakers do not have the luxury of endless search
time and so rarely exhaustively search. Expertise and experience teach
sensemakers when they have obtained a sufficient q documents to sat-
isfy their current need. This threshold must be determined per search
and may be dependent on the quality of sources. Thus, we require a
human oracle that can determine when sufficient evidence has been
gathered, and so adapt our human-only search algorithm as follows:

Algorithm 4: Human-Only Search
Let HREL be a Human Oracle that performs RELEVANCE

testing;
Let HSAT be a Human Oracle that performs SATISFY operations;
foreach sample k do

if HREL(k) == true then
Select sample k into q;

if HSAT (q) == true then
Exit sample k loop;

end

The overall work of the human in this case depends then on the cost of
evaluate the relevance of a single document, CREL, and the additional
cost to determine if the selected documents satisfy search goals, CSAT .
We also need to consider the order in which documents are presented
to the human. In the best case, the first q documents would be satisfac-
tory and the search could terminate before all k documents are seen.
In the worst case, the relevant documents will be the last q seen and
the search will be exhaustive. Randomly ordered searches will then be
dependent on P, the proportion of useful documents in k. Thus, the
total work performed by the human in this unsupported search will be

〈ΦH ,ΦM〉= 〈(CSAT ÷P)∗CREL,0〉

The human-only search provides insight into precisely why sup-
ported searching in mixed-initiative systems is so useful. System-
generated recommendations can make it more likely that relevant doc-
uments will be found early in a search. Moreover, as the available k
grows beyond what can possibly be exhaustively searched, system rec-
ommendations may be the only way to reach a satisfied search. This
is easily the case in streaming environments where analysts look for
sufficient signals to support their hypothesis regarding the occurrence
of particular activities. Utilizing machine effort as well makes it more
likely that the search will be satisfied without requiring the human to
determine the relevance of all k documents:

Algorithm 5: Human+Machine Recommended Search
Let HREL be a Human Oracle that performs RELEVANCE

testing;
Let HSAT be a Human Oracle that performs SATISFY operations;
Let MREC be a machine that makes RECOMMENDATIONS;
foreach sample k do

if MREC(k) == true then
if HREL(k) == true then

Select sample k into q;
if HSAT (q) == true then

Exit sample k loop;
end

We must now account for the expected number of recommendations as
the limiting factor in the work performed by the human. We still have
some P proportion of truly relevant documents in k, but this proportion
now affects the machine instead of the human. The better the recom-
mendations, the more it will appear to a human that all documents are

useful. We can replace this now with the expected number of recom-
mendations generated by a system (no system has been declared per-
fect yet, we can still expect some spurious recommendations). There
will now be a cost of CREC to the machine to recommend documents.
The total work of the mixed-initiative search then becomes

〈ΦH ,ΦM〉= 〈E[REC]∗ (CREL +CSAT ),k ∗CREC〉

7 DESIGN DEMONSTRATION: CYBERSECURITY SCENARIO

Next we examine a hypothetical sensemaking environment designed
to leverage the insights we’ve gained by examining sensemaking tasks
in streaming environments. Our hypothetical scenario is sensitive to
the needs of cybersecurity analysts, who must assemble clues from a
multitude of sources on-the-fly. This has traditionally been accom-
plished through the use of tools such as Splunk2 which supports com-
plex querying for patterns. Other technologies such as OpenStack3

are used to set up and manage networks and clouds while providing
a wealth of telemetry information including firewall creation and up-
dates, vpn connections, load balancing metrics, etc. The number of
data streams k that a cyber analyst must monitor in real time quickly
grows to the hundreds and thousands. For our current scenario, we
will limit the focus of our cyber analyst to spotting suspicious fire-
wall activity on their network, particularly from users with escalated
privileges.

7.1 User Tasks
The analyst in this scenario is engaged in several goal-oriented tasks at
once. They are actively monitoring for indications of threats that they
have seen before (and therefore know how to respond). They are also
concerned about the appearance of new threats they have not encoun-
tered before. When such a threat is encountered, they must then deter-
mine how to isolate the threat, remediate the affected situations, and
then prevent such a threat from threatening their system again. In our
focused case of suspicious firewall activity, our cyber analyst is look-
ing for indications that a set of valid network credentials is modifying
the network’s firewalls in ways that indicate they’ve somehow esca-
lated their privileges beyond what they should normally be allowed to
do. For our scenario, the cyber analyst is monitoring firewall changes
and selecting suspicious activity for further investigation.

7.2 Visualizations and Interactions
As noted in [7], visualizations have been a difficult problem for cy-
bersecurity research to effectively solve. To crudely summarize, vi-
sualizations appear to impose an arbitrary “middle layer” between an
analyst’s ability to monitor a system and navigate to specific data that
need investigating. Analysts prefer to work directly with their data
to be certain of their conclusions. Unfortunately, humans are better
suited to pick out graphical anomalies compared with textual ones.
Anscombe’s quartet [3] is a simple, well known demonstration of the
power of visualization over raw data.

In our scenario of firewalls and escalated privileges, our interface
will defer to analyst preference for tabular, raw data and the ma-
chine/interface will be challenged with presenting these rows of data
in such a way that the analysts using them don’t need to search. We
will attempt to design an interface which balances tasks similar to
the searching with recommendations of Section 5.2. The system will
present firewall meters in a particular order determined by the ana-
lyst. Selection of a row will expand the row to include more details
about the network user responsible for the entry. The system will also
then visually flag other rows the same user is responsible for as well
as similar rows regardless of the network user responsible. The ana-
lyst driving the investigation should be able to select rows or network
users in this manner an mark them as important enough for continued
observation. In turn, the system would give such marked or followed
meters and network users priority in the interface and reduce the time
the analyst spends locating them among other entries. Additional em-
bellishments to the interface might include system generated metadeta
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such as trends in the amount of activity associated with a specific net-
work user or network traffic affected by a given firewall. These addi-
tions would help an analyst determine whether or not a network user
or firewall merits continued investigation.

7.3 Scenario Complexity
Our scenario closely parallels a triage-type system. The analyst is re-
sponsible for verifying that the machine-recommended data is impor-
tant, and then prioritizing which data they wish to handle first. Data in
which the human has indicated interest is kept elevated by the machine
in order to reduce the amount of effort the human is required to spend
following it for updates. Additionally, whenever the human interacts
with a given piece of data, similar data is flagged as relevant in the
event that the human decides to expand or alter her investigation. This
gives us a mixed-initiative system where a cyber analyst drives the
investigation of firewall rules and activity by network users and is sup-
ported by machine abilities to process large volumes of data for simi-
larities and remember previously important actions. In the language of
the Human Oracle Model, this system is following the same approach
that was outlined in the Human+Machine Triage algorithm of 6.1.
as before, we have a machine that generates alerts/recommendations
(MALERT ). The analyst determines if the alert is legitimate (HFA), and
then marks important alerts for action and follow-up (HT RIAGE ). Thus,
we would expect the overall performance to again be:

〈ΦH ,ΦM〉= 〈k(E[ALERT ]∗(CFA+(1−E[FA])∗CT ∗s)),k∗CALERT 〉

with limiting factors being the rate at which alerts are generated
E[ALERT ], as well as the false alarm rate E[FA].

8 ADDITIONAL DOMAIN APPLICATIONS

In this paper, we demonstrated how the Human Oracle Model can
aid in the design and evaluation of tools for streaming data analy-
sis through example problems in the domain of cybersecurity. While
the rich canon of human-machine interactive systems in this domain
makes this a useful exemplar, we suggest that the benefits afforded
by this model for improving our understanding of streaming analysis
reach far beyond cybersecurity. For example, the theoretical models
of streaming analysis tasks in cybersecurity that were illustrated in
this paper could also apply directly to other important application ar-
eas. Indeed, one of the primary strengths of these models is that they
provide a level of abstraction that is useful not only in characteriz-
ing common approaches within a domain, but which may facilitate the
transfer of ideas across domains.

8.1 Healthcare
Interactive health information technology systems are providing crit-
ical support to medical professionals, but as with the examples pre-
sented in this work, providing appropriate computational support for
triage and monitoring is a nontrivial task. At present, workflow models
and model-based design methods are being used to provide designers
and developers with fundamental system requirements [6]. Along with
model checking [12], our work compliments these efforts by provid-
ing a formal description of human and machine balance so that areas
of inefficiency or inaccuracy can be targeted and improved. Frame-
works such as TURF [83] consider measure important factors such
as learnability, efficiency, and error prevention. Our work can add to
this discussion by illuminating how the balance between human and
machine may influence efficiency and error rate, specifically when it
comes to describing the human effort involved.

8.2 Finance
Each day, billions of financial transactions impact the lives of people
all over the world. Some (hopefully small) portion of these transac-
tions are fraudulent, or in some way connected to criminal activity.
Detecting and remediating such financial crime is a task that has his-
torically fallen on the shoulders of human analysts, who could eas-
ily become overwhelmed by the sheer volume of transactions. How-
ever, because the individuals and organizations perpetrating financial

fraud are constantly adapting their strategies to elude detection, the
detection of suspicious transactions cannot be fully automated. Sys-
tems such as WireVis [17, 18] have been presented to support hybrid
human-machine analysis in this domain. Coordinated views including
time-series, networks of entities or keywords, and heatmaps have all
been implemented and prototypes evaluated in terms of the hardware
requirements to support the analysis of at-scale data [18]. More recent
contributions have applied visual analytics techniques to financial sta-
bility monitoring [35]. As with many other domains, one of the largest
barriers to the adoption of these systems has been in justifying the cost
(both in terms of time and potential downtime of detection) of retrain-
ing analysts. The Human Oracle Model could support work such as
these by describing the complexity of user tasks, and for comparing
the potential benefits of these novel systems and workflows over exist-
ing best practices.

8.3 Power Grid Management
Large infrastructure systems such as the power grid produce an enor-
mous volume of data, and real-time situational awareness is critical for
maintaining safe and efficient operations [27]. Intensive observations
and task analyses have produced an understanding of the complex and
collaborative behavior of grid operators [56]. The work we present
here complements this analysis by providing insight into the complex-
ity of observed tasks, and could help to prioritize how improvements
based on such analysis are made. In addition to these analyses, highly-
specialized decision support systems such as M-DART [53] have been
introduced to support grid operators in managing high-volume data
from multiple streams, assist in anomaly detection, and even facilitate
causal inference. The importance of small improvements in reaction
time cannot be understated: the amount of time elapsed in responding
to power grid events can mean the difference between the nuisance of a
brief flicker of the lights and the potentially life-threatening effects of
a full scale blackout. Work such as [47] describes the cascading effects
of losing multiple substations, and provides evidence that preventing
substation loss early has a profound impact on the resilience of the
grid. The work presented here contributes to this discussion by help-
ing us to understand where obstacles in the human operator’s task load
could exacerbate these conditions, and where appropriate automation
would improve grid reliability.

9 DISCUSSION AND FUTURE EXTENSIONS

The model presented in this paper provides a critical first step in quan-
tifying the use of humans as computational resources, and helps us to
better understand the intricate relationships among different problems
and problem families when viewed through this simple lens. That said,
this model only just scratches the surface of this potentially rich area
for future research, and conveniently ignores some very real factors
present in any system involving the variability of computing using hu-
mans as part of the computational engine. In the following sections,
we will discuss some of the limitations of this model, as well as moti-
vate our continued research in this area.

9.1 Resource Constraints and Imperfect Oracles
Under the straightforward Human Oracle Model, there is an implicit
assumption a Human Oracle is always be able to provide the correct
answer at a fixed cost. Intuition and experience indicates that in reality,
humans don’t work this way: they eventually get tired or bored, and as
a consequence their speed and accuracy suffer. In addition to variation
over time, individual differences in ability and cost are absent, despite
their demonstrated impact on visualization performance [57]. In the
real world, not all humans are equal in their capacity to answer the
questions we ask. Some are more skilled or have better training, and
their expertise comes (we presume) at a higher cost.

Similar issues have arisen in the area of active learning, which has
historically assumed a single tireless, flawless, benevolent oracle was
always available to provide labels for its training data. Proactive learn-
ing relaxes these assumptions, adopting a decision-theoretic approach
to match one of a collection of (possibly imperfect) oracles to each
instance [28]. More recent work in the area of multiple expert active
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learning (MEAL) improves upon this model by incorporating load bal-
ancing to ensure that no worker has to shoulder an inequitable share of
the burden [74]. These methods assume there exists some mechanism
to model both how hard any single problem instance is, as well as the
cost and effectiveness of a given worker.

9.1.1 Future Work: Empirical Validation
It is our claim that theoretical arguments are useful in helping us to
unravel the complex phenomena involved in the integration of human
and machine effort. In order for this claim to hold true, it is criti-
cal that the models we build actually parallel the observations that we
make of these phenomena in the wild. While perhaps ironic, we be-
lieve that the next step in advancing the utility of the theoretical mod-
els presented here is empirical validation. As of this writing, we have
therefore deployed a web-based human subjects experiment via Ama-
zon Mechanical Turk [11, 48, 58] in which observe human analytical
behavior and performance as we manipulate various components of a
streaming analysis environment (stream volume, sampling rate, etc.).

Fig. 4. The training module of our ongoing large-scale human subjects
experiment in which we manipulate various components of a simple
streaming analysis environment in order to provide empirical validation
for the predictions made by the Human Oracle Model. Participants are
asked to perform analysis of a synthetic data stream under conditions
that simulate the Triage, Monitor, and Sensemaking tasks modeled in
Sections 5 and 6.

Through this experiment, we will collect interaction data from a
large number of participants (target n = 1,000) as they perform vari-
ous streaming analysis tasks. Participants are first trained to recognize
patterns in the streaming data, and then to identify deviations from
those patterns (see Fig. 4). They will then be assigned to one of sev-
eral analytical conditions that simulate the Triage, Monitor, and Sense-
making tasks modeled in Sections 5 and 6. Upon collecting sufficient
data, we will then compare participants’ performance with that pre-
dicted by the models described in this paper. This data will help us to
better understand the relative cost of various sensemaking subtasks, as
well as characterize how that cost varies between individuals and how
it changes throughout the course of the analytical process. By com-
paring the performance of predicted by the Human Oracle Model with
that of actual human-machine systems, we hope to identify areas for
tuning and refinement of these models overall, as well as identify val-
ues for the constants and coefficients that are at present conveniently
ignored. As the empirical validation of physiological models such as
Fitts’ Law [34] as they apply to human-computer interaction has en-
abled the development of more effective user interfaces, we hope that
this line of inquiry will facilitate the development of more effective
analytical tools.

9.2 Quantifying the Human Brain

This highlights another problem: at present, there does not exist any
reliable method for quantifying how hard a human has to work in order
to accomplish a given task. While cognitive modeling techniques can
help us to understand the interplay between stimulus and response,
existing architectures are not designed to determine the “complexity”
of the model itself. As such, at present this model cannot actually tell
us how much work the human is doing; it only tells us how many times
the human is working. When the task is comparable, such as when
we are comparing various monitoring algorithms, this does not pose a
significant problem. However, because we don’t fully understand the
fundamental operations of the human brain or how they assemble to
perform computation, it is not yet possible to calculate a precise per-
operation cost. This leaves us unfortunately stuck when we try to make
comparisons between systems that ask the human to perform different
kinds of actions.

9.2.1 Future Work: Semantic Interaction

One approach to understanding how much work a human is doing
comes from the concepts of semantic interaction [30] which empha-
sizes co-reasoning between human analysts and analytic models. The
critical task is for tacit user knowledge to be captured via direct manip-
ulation of data in visualizations. By directly binding model-steering to
the interactive elements of a visualization, we reduce the confounding
influence of separate model parameters and their impacts on interface
usability. Human users needed put forth effort to understand any given
model parameter, they can focus on their own thoughts and reasoning
process while underlying system models are steered by the feedback
from the visualization. Such semantic interaction has been widely
studied in spatial visual metaphors, particularly in text processing do-
mains where relationships and similarities between data objects can
be easily captured with proximity [32, 10, 31]. Future work is needed
to establish other visual metaphors and interactions which elicit the
same reflection of human cognition. Additional benefits of a wider
adoption of semantic interaction include a reduction in the number of
tasks a human user may be asked to complete for a given analysis: if
the human is able to steer supporting models during the course of their
analysis, they do not need to pause their analysis for the additional
work of model tuning which will reduce the overall complexity of any
analysis process.

10 CONCLUSIONS

Human-machine collaborative systems are becoming increasingly im-
portant to visual analytics as the complexity and velocity of data in-
creases. We have made brief allusions to streaming data throughout
this work. Streaming data has made human-machine collaborative
systems even more critical to the analytical tasks required for sense-
making. Compared with static data, streaming data presents several
additional challenges to sensemaking: it arrives from a multitude of
sources both human and machine generated and at such speeds and
volumes that it cannot be collected, stored, or processed fast enough
for complete samplings. To understand the full impact of streaming
data on visual analytic systems, we must have methods for describing
the expected effort of humans and machines as they work together.
In this work, we have argued for the need for a theoretical frame-
work through which to understanding the complexity of these human-
machine hybrid systems. We have demonstrated the use of the Human
Oracle Model for classifying the task complexity of existing systems,
as well as its use in understanding yet-to-be-implemented systems. By
making use of tools like the Human Oracle Model, we can begin to un-
derstand how human tasks must me modified in order to cope with re-
duced time and increased data volume. A better understanding of task
complexity means that we can better understand where small modifi-
cations to workflows will improve collaborative results. The theoreti-
cal underpinnings of these complexity models will provide a powerful
mechanism to proactively select solutions from across the visual ana-
lytics domain and generalize future findings to new areas.

ACKNOWLEDGMENTS

The authors wish to thank Samantha Behrens, Zheng “Alice” Mu, and
the rest of the Human Computation and Visualization Laboratory at
Smith College for their implementation and design efforts in support of
this work. The research described in this paper is part of the Analysis
In Motion Initiative at Pacific Northwest National Laboratory. It was
conducted under the Laboratory Directed Research and Development
Program at PNNL, a multi-program national laboratory operated by
Battelle for the U.S. Department of Energy.

REFERENCES

[1] M. Alsaleh, A. Alqahtani, A. Alarifi, and A. Al-Salman. Visualizing ph-
pids log files for better understanding of web server attacks. In Proceed-
ings of the Tenth Workshop on Visualization for Security. ACM, 2013.

[2] M. Angelini, N. Prigent, and G. Santucci. Percival: proactive and reactive
attack and response assessment for cyber incidents using visual analytics.
In Proceedings of Visualization for Security, IEEE Symposium on, 2015.

[3] F. J. Anscombe. Graphs in statistical analysis. The American Statistician,
27(1):17–21, 1973.

[4] D. L. Arendt, R. Burtner, D. M. Best, N. D. Bos, J. R. Gersh, C. D.
Piatko, and C. L. Paul. Ocelot: user-centered design of a decision support
visualization for network quarantine. In Proceedings of Visualization for
Security, IEEE Symposium on, Oct 2015.

[5] J. Attenberg, P. Ipeirotis, and F. Provost. Beat the machine: Challenging
workers to find the unknown unknowns. In Workshop on Human Compu-
tation, AAAI Conference on Artificial Intelligence, 2011.

[6] A. B. Berry, K. A. Butler, C. Harrington, M. O. Braxton, A. J. Walker,
N. Pete, T. Johnson, M. W. Oberle, J. Haselkorn, W. P. Nichol, et al.
Using conceptual work products of health care to design health it. Journal
of Biomedical Informatics, 59:15–30, 2016.

[7] D. M. Best, A. Endert, and D. Kidwell. 7 key challenges for visualization
in cyber network defense. In Proceedings of the Eleventh Workshop on
Visualization for Security, pages 33–40. ACM, 2014.

[8] F. Boujarwah, J. Kim, G. Abowd, and R. Arriaga. Developing scripts
to teach social skills: can the crowd assist the author? In Workshop on
Human Computation, AAAI Conference on Artificial Intelligence, 2011.

[9] I. Bowman, S. Joshi, and J. Van Horn. Query-based coordinated multiple
views with feature similarity space for visual analysis of mri reposito-
ries. In Proceedings of the Conference on Visual Analytics Science and
Technology (VAST), pages 267–268. IEEE, 2011.

[10] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang. Dis-function: Learn-
ing distance functions interactively. In Proceedings of the Conference
on Visual Analytics Science and Technology (VAST), pages 83–92. IEEE,
2012.

[11] M. Buhrmester, T. Kwang, and S. D. Gosling. Amazon’s mechanical turk
a new source of inexpensive, yet high-quality, data? Perspectives on
Psychological Science, 6(1):3–5, 2011.

[12] K. A. Butler, E. Mercer, A. Bahrami, and C. Tao. Model checking for
verification of interactive health it systems. In Proceedings of the AMIA
Annual Symposium, volume 2015, page 349. American Medical Infor-
matics Association, 2015.

[13] B. C. M. Cappers and J. J. van Wijk. Snaps: Semantic network traffic
analysis through projection and selection. In Proceedings of Visualization
for Security, IEEE Symposium on, 2015.

[14] S. K. Card, A. Newell, and T. P. Moran. The psychology of human-
computer interaction. L. Erlbaum Associates Inc., 1983.

[15] J. Chamberlain, M. Poesio, and U. Kruschwitz. A demonstration of
human computation using the phrase detectives annotation game. In
SIGKDD Workshop on Human Computation, pages 23–24. ACM, 2009.

[16] K. Chan, I. King, and M. Yuen. Mathematical modeling of social games.
In Proceedings of the Computational Science and Engineering, Interna-
tional Conference on, volume 4, pages 1205–1210. IEEE, 2009.

[17] R. Chang, M. Ghoniem, R. Kosara, W. Ribarsky, J. Yang, E. Suma,
C. Ziemkiewicz, D. Kern, and A. Sudjianto. Wirevis: Visualization of
categorical, time-varying data from financial transactions. In Proceedings
of the Symposium on Visual Analytics Science and Technology (VAST),
pages 155–162. IEEE, 2007.

[18] R. Chang, A. Lee, M. Ghoniem, R. Kosara, W. Ribarsky, J. Yang,
E. Suma, C. Ziemkiewicz, D. Kern, and A. Sudjianto. Scalable and inter-
active visual analysis of financial wire trans. for fraud detection. Journal
of Information Visualization, 7(1):63–76, 2008.

[19] T. Chang, C. Chan, and J. Hsu. Musweeper: An extensive game for col-
lecting mutual exclusions. In Workshop on Human Computation, AAAI
Conference on Artificial Intelligence, 2011.

[20] K. Cook, N. Cramer, D. Israel, M. Wolverton, J. Bruce, R. Burtner, and
A. Endert. Mixed-initiative visual analytics using task-driven recommen-
dations. In Proceedings of the Conference on Visual Analytics Science
and Technology (VAST), pages 9–16. IEEE, 2015.

[21] R. Crouser and R. Chang. An affordance-based framework for human
computation and human-computer collaboration. Visualization and Com-
puter Graphics, IEEE Trans. on, 18(12):2859–2868, 2012.

[22] R. J. Crouser, R. Chang, and B. Hescott. Toward complexity measures for
systems involving human computation. Journal of Human Computation,
1(1):45–65, 2014.

[23] P. Dai, D. Weld, and Mausam. Human intelligence needs ai. In Work-
shop on Human Computation, AAAI Conference on Artificial Intelligence,
2011.

[24] E. Della Valle, S. Ceri, F. van Harmelen, and D. Fensel. It’s a streaming
world! reasoning upon rapidly changing information. Journal of Intelli-
gent Systems, 24(6):83–89, 2009.

[25] B. Dervin. Sense-making theory and practice: an overview of user inter-
ests in knowledge seeking and use. Knowledge Management, 2(2):36–46,
1998.

[26] D. Diaper and N. Stanton. The handbook of task analysis for human-
computer interaction. CRC Press, 2003.

[27] U. DOE. Grid 2030: A national vision for electricity’s second 100 years.
US DOE Report, 2003.

[28] P. Donmez and J. Carbonell. Proactive learning: cost-sensitive active
learning with multiple imperfect oracles. In Proceedings of the Seven-
teenth Conference on Information and Knowledge Management, pages
619–628. ACM, 2008.

[29] A. Endert. Semantic Interaction for Visual Analytics: Inferring Analytical
Reasoning for Model Steering. PhD thesis, Virginia Polytechnic Institute
and State University, 2012.

[30] A. Endert. Semantic interaction for visual analytics: Toward cou-
pling cognition and computation. Computer Graphics and Applications,
34(4):8–15, 2014.

[31] A. Endert, P. Fiaux, and C. North. Semantic interaction for visual text an-
alytics. In SIGCHI Conference on Human Factors in Computing Systems,
pages 473–482. ACM, 2012.

[32] A. Endert, C. Han, D. Maiti, L. House, and C. North. Observation-level
interaction with statistical models for visual analytics. In Proceedings
of the Conference on Visual Analytics Science and Technology (VAST),
pages 121–130. IEEE, 2011.

[33] R. F. Erbacher. Visualization design for immediate high-level situational
assessment. In Proceedings of the Ninth International Symposium on
Visualization for Security, pages 17–24. ACM, 2012.

[34] P. M. Fitts. The information capacity of the human motor system in con-
trolling the amplitude of movement. Journal of Experimental Psychology,
47(6):381, 1954.

[35] M. D. Flood, V. L. Lemieux, M. Varga, and B. W. Wong. The application
of visual analytics to financial stability monitoring. Journal of Financial
Stability, 2016.

[36] J. J. Fowler, T. Johnson, P. Simonetto, M. Schneider, C. Acedo,
S. Kobourov, and L. Lazos. Imap: Visualizing network activity over in-
ternet maps. In Proceedings of the Eleventh Workshop on Visualization
for Security, pages 80–87. ACM, 2014.

[37] C. C. Gray, P. D. Ritsos, and J. C. Roberts. Contextual network nav-
igation to provide situational awareness for network administrators. In
Proceedings of Visualization for Security, IEEE Symposium on, 2015.

[38] T. M. Green, W. Ribarsky, and B. Fisher. Building and applying a human
cognition model for visual analytics. Journal of Information Visualiza-
tion, 8(1):1–13, 2009.

[39] L. Hao, C. G. Healey, and S. E. Hutchinson. Ensemble visualization for
cyber situation awareness of network security data. In Proceedings of
Visualization for Security, IEEE Symposium on, 2015.

[40] E. Horvitz. Principles of mixed-initiative user interfaces. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 159–166. ACM, 1999.

[41] Y.-a. Kang and J. Stasko. Characterizing the intelligence analysis process:
Informing visual analytics design through a longitudinal field study. In
Proceedings of the Conference on Visual Analytics Science and Technol-
ogy (VAST), pages 21–30. IEEE, 2011.

[42] D. Kieras and K. A. Butler. Task analysis and the design of functionality.



CROUSER ET AL.: TOWARD THEORETICAL TECHNIQUES FOR MEASURING THE USE OF HUMAN EFFORT IN VISUAL ANALYTIC SYSTEMS 129

learning (MEAL) improves upon this model by incorporating load bal-
ancing to ensure that no worker has to shoulder an inequitable share of
the burden [74]. These methods assume there exists some mechanism
to model both how hard any single problem instance is, as well as the
cost and effectiveness of a given worker.

9.1.1 Future Work: Empirical Validation
It is our claim that theoretical arguments are useful in helping us to
unravel the complex phenomena involved in the integration of human
and machine effort. In order for this claim to hold true, it is criti-
cal that the models we build actually parallel the observations that we
make of these phenomena in the wild. While perhaps ironic, we be-
lieve that the next step in advancing the utility of the theoretical mod-
els presented here is empirical validation. As of this writing, we have
therefore deployed a web-based human subjects experiment via Ama-
zon Mechanical Turk [11, 48, 58] in which observe human analytical
behavior and performance as we manipulate various components of a
streaming analysis environment (stream volume, sampling rate, etc.).

Fig. 4. The training module of our ongoing large-scale human subjects
experiment in which we manipulate various components of a simple
streaming analysis environment in order to provide empirical validation
for the predictions made by the Human Oracle Model. Participants are
asked to perform analysis of a synthetic data stream under conditions
that simulate the Triage, Monitor, and Sensemaking tasks modeled in
Sections 5 and 6.

Through this experiment, we will collect interaction data from a
large number of participants (target n = 1,000) as they perform vari-
ous streaming analysis tasks. Participants are first trained to recognize
patterns in the streaming data, and then to identify deviations from
those patterns (see Fig. 4). They will then be assigned to one of sev-
eral analytical conditions that simulate the Triage, Monitor, and Sense-
making tasks modeled in Sections 5 and 6. Upon collecting sufficient
data, we will then compare participants’ performance with that pre-
dicted by the models described in this paper. This data will help us to
better understand the relative cost of various sensemaking subtasks, as
well as characterize how that cost varies between individuals and how
it changes throughout the course of the analytical process. By com-
paring the performance of predicted by the Human Oracle Model with
that of actual human-machine systems, we hope to identify areas for
tuning and refinement of these models overall, as well as identify val-
ues for the constants and coefficients that are at present conveniently
ignored. As the empirical validation of physiological models such as
Fitts’ Law [34] as they apply to human-computer interaction has en-
abled the development of more effective user interfaces, we hope that
this line of inquiry will facilitate the development of more effective
analytical tools.

9.2 Quantifying the Human Brain

This highlights another problem: at present, there does not exist any
reliable method for quantifying how hard a human has to work in order
to accomplish a given task. While cognitive modeling techniques can
help us to understand the interplay between stimulus and response,
existing architectures are not designed to determine the “complexity”
of the model itself. As such, at present this model cannot actually tell
us how much work the human is doing; it only tells us how many times
the human is working. When the task is comparable, such as when
we are comparing various monitoring algorithms, this does not pose a
significant problem. However, because we don’t fully understand the
fundamental operations of the human brain or how they assemble to
perform computation, it is not yet possible to calculate a precise per-
operation cost. This leaves us unfortunately stuck when we try to make
comparisons between systems that ask the human to perform different
kinds of actions.

9.2.1 Future Work: Semantic Interaction

One approach to understanding how much work a human is doing
comes from the concepts of semantic interaction [30] which empha-
sizes co-reasoning between human analysts and analytic models. The
critical task is for tacit user knowledge to be captured via direct manip-
ulation of data in visualizations. By directly binding model-steering to
the interactive elements of a visualization, we reduce the confounding
influence of separate model parameters and their impacts on interface
usability. Human users needed put forth effort to understand any given
model parameter, they can focus on their own thoughts and reasoning
process while underlying system models are steered by the feedback
from the visualization. Such semantic interaction has been widely
studied in spatial visual metaphors, particularly in text processing do-
mains where relationships and similarities between data objects can
be easily captured with proximity [32, 10, 31]. Future work is needed
to establish other visual metaphors and interactions which elicit the
same reflection of human cognition. Additional benefits of a wider
adoption of semantic interaction include a reduction in the number of
tasks a human user may be asked to complete for a given analysis: if
the human is able to steer supporting models during the course of their
analysis, they do not need to pause their analysis for the additional
work of model tuning which will reduce the overall complexity of any
analysis process.

10 CONCLUSIONS

Human-machine collaborative systems are becoming increasingly im-
portant to visual analytics as the complexity and velocity of data in-
creases. We have made brief allusions to streaming data throughout
this work. Streaming data has made human-machine collaborative
systems even more critical to the analytical tasks required for sense-
making. Compared with static data, streaming data presents several
additional challenges to sensemaking: it arrives from a multitude of
sources both human and machine generated and at such speeds and
volumes that it cannot be collected, stored, or processed fast enough
for complete samplings. To understand the full impact of streaming
data on visual analytic systems, we must have methods for describing
the expected effort of humans and machines as they work together.
In this work, we have argued for the need for a theoretical frame-
work through which to understanding the complexity of these human-
machine hybrid systems. We have demonstrated the use of the Human
Oracle Model for classifying the task complexity of existing systems,
as well as its use in understanding yet-to-be-implemented systems. By
making use of tools like the Human Oracle Model, we can begin to un-
derstand how human tasks must me modified in order to cope with re-
duced time and increased data volume. A better understanding of task
complexity means that we can better understand where small modifi-
cations to workflows will improve collaborative results. The theoreti-
cal underpinnings of these complexity models will provide a powerful
mechanism to proactively select solutions from across the visual ana-
lytics domain and generalize future findings to new areas.
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