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Visual analytics is entering a period of renewed growth due to a shift in focus 

from static to streaming data applications. In this article, the authors illustrate 

several challenges arising from this pivot and suggest potential avenues for 

future exploration.

I n the age of data science, the use of inter-
active information-visualization techniques 
has become increasingly ubiquitous. From 

online scientific journals to the New York Times 
graphics desk, the utility of interactive visual-
ization for both storytelling and analysis has 
become ever more apparent. Many visual ana-
lytics systems employ an overview first, zoom-
and-filter, details-on-demand model, which 
enables the reader to first get a big picture view 
and then dig deeper into the data. As these tech-
niques have become more readily accessible, the 
appeal of combining interactive visualization 
with computational analysis continues to grow.

Arising from a need for scalable, human- 
driven analysis, a primary objective of visual 
analytics systems is to capitalize on the comple-
mentary strengths of human and machine anal-
ysis, using interactive visualization as a medium 
for communication between the two. These sys-
tems leverage developments from the fields of 
information visualization, computer graphics, 
machine learning, and human-computer interac-
tion to support insight generation in areas where 
purely computational analyses fall short.

Over the past decade, visual analytics sys-
tems have generated remarkable advances in 
many historically challenging analytical con-
texts. These include areas such as modeling po-
litical systems,1 detecting financial fraud,2 and 

cybersecurity.3 In each of these contexts, do-
main expertise and human intuition is a neces-
sary component of the analysis. This intuition 
is essential to building trust in the analytical 
products, as well as supporting the translation 
of evidence into actionable insight.

In addition, each of these examples also high-
lights the need for scalable analysis. In each case, 
it’s infeasible for a human analyst to manually  
assess the raw information unaided, and the com-
munication overhead to divide the task between a 
large number of analysts makes simple parallel-
ism intractable. Regardless of the domain, visual 
analytics tools strive to optimize the allocation 
of human analytical resources, and to streamline 
the sensemaking process on data that are mas-
sive, complex, incomplete, and uncertain in sce-
narios requiring human judgment.

Streaming Data: A New Frontier
The analysis of streaming data (data that are 
generated continuously rather than collected in 
a single pass) presents an altogether new set of 
challenges for the designers of visual analytics 
tools. In a streaming context, the user expends 
much time and cognitive effort trying to stay 
abreast changing conditions in a complex data 
environment that’s ripe for misinterpretation. 
Sampling and filtering mean that data are in-
complete in the best of circumstances. Because 
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of this, traditional visual analytics 
systems fall short in many stream-
ing data contexts, as it becomes im-
possible to maintain an up-to-date 
overview without derailing the ana-
lyst’s working model of the situation.

The power grid represents a case 
study of one of the largest, con-
tinuously operated streaming-data  
machines in the US. It produc-
es enormous volumes of data from 
a multitude of in-the-field sensors, 
which requires real-time situation 
awareness to maintain safe and ef-
ficient operations. Intensive obser-
vational studies and task analyses 
have enabled insight into the com-
plex behavior of trained grid op-
erators (see Figure 1).4 Successful 
analysis requires shared aware-
ness of tasks and the current state 
of the grid, both those directly un-
der the operator’s control as well as 
those adjacent to controlled regions.5 
Specialized decision support sys-
tems such as M-DART6 have shown 
promise in supporting the offloading 
of certain low-level tasks, enabling 
grid operators to interact with in-
formation at levels that support bet-
ter anomaly detection and facilitate 
causal inference. Approaches such 
as these are needed to help operators 
cope with the volume of information 
and alarms that currently occupy 
the majority of their time.5

The power grid is in constant 
operation at all hours of the day 
and night, generating new data to 
be responded to, logged, and ar-
chived for both accountability and 
future-planning purposes. This vol-
ume makes proactive responses to 
changing conditions difficult: small 
signals of trouble such as a poorly 
performing piece of equipment in a 
remote substation are lost until crit-
ical alarms draw the attention of 
operators. By the time operators are 
made aware, it might be too late to 
avert an incident. The ability to find 
small but important signals in the 
noise of daily operations could be 

the difference between small-scale 
disturbances and fully cascading 
failures.

Some of the most challenging 
pro blems for operators could also 
benefit from visual analytic sys-
tems. For instance, updating grid re-
liability models to handle real-time 
data and making them accessible 
to control rooms would support the 
mitigation of cascading substation 
losses. In this context, the effect of 
even modest improvements in reac-
tion time can’t be understated: the 
time elapsed in responding to power 
grid events can mean the difference 
between a brief flicker of the lights 
and the devastating, potentially life-
threatening effects of a full scale 
blackout.

Challenges in Streaming 
Data Analysis
This example demonstrates the need 
for clear communication regarding 
changes in data over time, as well 
as how these changes might alter a 
user’s understanding of the past and 
expected future. When analysts are 
working with streaming data, a sub-
stantial portion of their time and cog-
nitive effort is spent trying to stay 
on top of changing situations within 
a complex data environment that’s 
ripe for misinterpretation. Because 
of the incoming data’s overwhelm-
ing scale, sampling and filtering 
are a necessity: this means that 
even in the best of circumstances,  
the data that ultimately reach the 
analyst are incomplete. Initial re-
sults generated using fast heuris-
tics might be contradicted by more 
computationally intensive, more ac-
curate analysis that comes in later. 
As a result of these simultaneous, 
asynchronous processes, data might 
arrive out of order, with informa-
tion about temporally later phenom-
ena becoming available before data 
about precursor events that provide 
important context. These complexi-
ties in change and uncertainty add 

to a user’s cognitive load, present-
ing several new challenges within 
the streaming visual analytics life-
cycle (see Figure 2).

Challenge 1: Orientation
Imagine an operator working in the 
control room of a transmission util-
ity in the power grid. Every day, 
this operator receives a schedule of 
planned maintenance, anticipated 
impacts to the grid, and the sched-
uled use of transmission resources. 
The operator combines this infor-
mation with daily weather forecasts 
and historical grid performance data 
to complete a mental model of their 
day and possible scenarios for grid 
operations. These activities, as well 
as any other preparatory tasks, are 
what we refer to as orientation.

In a general streaming context, 
the analyst often faces the daunting 

Figure 1. A transmission control 
dispatcher monitors multiple data 
streams simultaneously, bringing 
in external context while trying to 
keep pace with a rapidly evolving 
data landscape. The North American 
Electric Reliability Corporation 
oversees the reliability of a grid that 
provides electricity to 334 million 
people through eight regional entities. 
The Western Electricity Coordinating 
Council alone oversees 121,200 
circuit-miles of transmission  
lines connecting 350 US and  
34 international entities serving a 
population of more than 80 million. 
(Photograph by Eric Andersen 
at Pacific Northwest National 
Laboratory.)



Natural Web Interfaces

74 www.computer.org/internet/ IEEE INTERNET COMPUTING

task of testing competing lines of 
reasoning on multiple data streams 
in tandem. These streams might be 
sampled, filtered, error-prone, and 
uncertain. They might not be sam-
pled at the same resolution, or they 
might come in at irregular inter-
vals. Moreover, the pace at which 
the data are changing could pre-
clude the use of traditional explor-
atory data analysis strategies for 
orientation. By the time the compu-
tation of even a modest statistical 
model terminates, the data land-
scape could be completely differ-
ent. Analysts of streaming data are 
thus presented with a conundrum: 
they must address problems requir-
ing human intellect, but they must 
also adapt to machine speeds. They 
must build a robust understanding 
of the current state of the data, as 
well as any relevant changes, and 
they must do so without the lux-
ury of unlimited hindsight. Meet-
ing this challenge will require a 
reimagining of the overview first 
model, perhaps with an emphasis 
on the communication of critical 

change rather than the communi-
cation of full history.

Challenge 2: Reorientation
Generally, once analysts have suc-
cessfully oriented themselves, they 
must then be able to efficiently iden-
tify and react to new developments 
that violate their assumptions and ex-
pectations. They must rapidly refine 
their understanding, and then gen-
erate and test new hypotheses. They 
must swiftly interpret and reinter-
pret incoming and historical data in 
light of these changes, and ultimate-
ly use these new models to consider 
potential futures states they didn’t or 
couldn’t previously anticipate.

Early research into how humans 
build and use mental models7 pro-
vides an incisive window into why 
this presents such a daunting chal-
lenge. Faced with an overwhelming 
barrage of competing signals and 
relatively expensive biological com-
putation, we build abstracted, high-
ly simplified models of the world 
to cope. This results in some fairly 
predictable behavior. For example, 

we know that mental models form 
quickly but change slowly, and that 
we tend to see what we expect to 
see.8 We know that new information 
gets incorporated into the existing 
mental model. Moreover, we know 
that when presented with compet-
ing information, the brain will go 
to extraordinary lengths to avoid 
recalibration.

Returning to our example grid op-
erator, we can imagine a number of 
scenarios that he or she must deal with 
that weren’t a part of earlier orienta-
tion tasks. For instance, the unexpect-
ed loss of a transmitter at a substation 
would impact the operator’s ability to 
stick to the day’s scheduled outages. 
This would trigger reorientation ac-
tivities that could include re-evalu-
ating upcoming plans for feasibility, 
cancelling low-priority maintenance, 
contacting adjacent uti lities for help, 
and triggering repair efforts to resolve 
the situation and return to normal.  
To support reorientation at the fre-
quency required in streaming data ap-
plications, we must investigate more 
effective mechanisms for alerting 
the operator to changing conditions 
as well as triage support technolo-
gies that go beyond rigid, rule-based 
methods.

Challenge 3: Summary Statistics
During the course of a regular work-
day, grid operators must careful-
ly match the supply of electricity 
with consumer demand. Generate 
too much and resources are wast-
ed, too little and customers expe-
rience blackouts. This estimation is 
re-evaluated every hour in trans-
mission utilities and is based on op-
erators’ ability to make inferences 
from actual electricity usage on sim-
ilar days.5 Accurate statistics and 
summarization of all available his-
tory is critical in this process, as the 
operator might have to decide which 
of several similar historical usage 
patterns is the best predictor of cur-
rent conditions.
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Figure 2. Streaming visual analytics lifecycle. (a) Data are sampled from 
various streams; (b) sampled data are processed, relevant changes detected; 
(c) the processed sample is mapped onto various visual dimensions; and  
(d) the visualization is interpreted by the analyst (e) in the context of domain 
knowledge and other external information, which drives (f) interaction with the 
visualization and underlying model.
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Summary statistics are the back-
bone of many data visualization 
techniques that highlight anomalies 
and other interesting events in the 
data as deviations from a baseline. 
However, as data volume increas-
es, standard summary statistics and 
aggregate measures start to lose 
their descriptive power. This is es-
pecially apparent when large, sud-
den changes occur in the baseline. 
In such cases, summary statistics 
that appear stable in the short term 
might be significantly misleading 
in the long term. When working 
with streaming data, we might need 
to evaluate alternative techniques 
such as moving averages and local 
regression.

Challenge 4: Scalability  
and Approximation
To be most effective, an interactive 
system needs to update and render 
information at a rate of at least 12 
frames per second. In many stream-
ing data applications, the scale of the 
data to be processed and visualized 
makes this benchmark difficult or 
impossible to achieve. As the refresh 
rate starts to fall below 10 frames 
per second, the delay between a us-
er’s action and the system’s response 
begins to disrupt the user’s ongoing 
cognitive processes, which great-
ly diminishes their ability to ex-
plore the data and test hypotheses. 
Thus, to achieve the benefits of in-
teractive visual analysis on stream-
ing data, we might need to gradually, 
but intelligently, degrade the data 
sampling, analytics, and visual rep-
resentations in favor of more effi-
cient approximations.

In many cases, we can use what 
we know about human perception 
to help inform these approximation 
strategies. For example, we know that 
information density in visual analyt-
ics is bounded by the discrimination 
power of the human visual system, 
which is determined by well-under-
stood perceptual limits. Therefore, 

when continued refinement won’t lead 
to a human-detectable change to the 
visual display, we know that we can 
terminate any additional computa-
tion without degrading the visual dis-
play’s accuracy. Bounds such as these 
can inform an approximate/adaptive 
computing strategy that enables us 
to intelligently trim extraneous com-
putation, maintaining locally optimal 
performance under changing compu-
tational circumstances.

Discussion
Although we framed these challenges  
in the context of power grid re-
silience, these same issues emerge 
wherever streaming data are in play; 
for example, cybersecurity, medi-
cine, climate change, and more. The 
blind reapplication of established 
strategies for visualizing static data 
might not succeed when applied 
to streaming data, even when the  
systems were designed for similar 
tasks in similar domains. Such chal-
lenges aren’t restricted to the do-
mains highlighted previously; in the 
wake of ever-evolving data land-
scapes and human intelligence that 
proves difficult to scale, the visual-
ization community faces pressing is-
sues as a whole.

The desire to build effective visual-
analytics systems for streaming data 
will require us to develop novel ways 
to represent change. These representa-
tions must not only be accurate, but 
must also present identified patterns 
in the context of the analyst’s under-
standing of the evolving situation. 
This necessity for context and clarity 
has been a driving force in the devel-
opment of visual analytics as a field, 
and so we might look past solutions for 
inspiration. For example, consider the 
utility of video keyframes in facilitat-
ing rapid orientation to a lengthy vid-
eo’s content. Could analytic keyframes 
provide a user with succinct change 
points in both data and analytic 
thinking? How would those points be 
identified and kept up to date, and how 

would we deal with branching analyt-
ical paths? Could they be used to pro-
vide both fast orientation, as well as a 
compact representation of change over 
a long window of time?

H istorically, the analysis of com-
plex data has been an offline 

process, in which the data’s dynam-
ic nature is ignored during analy-
sis. This simplifying assumption is 
acceptable when the analysis is fast 
relative to the rate of change of the 
data. However, in big data environ-
ments in which data and conditions 
continually change, ignoring this 
change is insufficient. Acknowledg-
ing the dynamic nature of real-world 
problems compels a new line of re-
search to study the effects of stream-
ing data in visual analytics systems. 
This article is a call to action to ad-
dress these challenges and enable 
users to benefit fully from the capa-
bility to gain insight from their data 
in real time. 
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